SRP Update

Bart Van Assche,

FUSION-iO®
Overview

• Involvement With SRP
• SRP Protocol Overview
• Recent SRP Driver Changes
• Possible Future Directions
Involvement with SRP

• Maintainer of the open source Linux SRP initiator and the SCST SRP target drivers.
• Member of the Fusion-io ION team. ION is an all-flash H.A. shared storage appliance.
• Flash memory provides low latency and high bandwidth.
• The focus of RDMA is on low latency and high bandwidth.
• In other words, RDMA is well suited for remote access to flash memory.
SRP Protocol Overview

• SRP = SCSI RDMA Protocol.
• Defines how to perform SCSI communication over an RDMA network.
• Defines how to discover InfiniBand SRP targets, how to log in, how to transfer SCSI CDB's and also how to transfer data via RDMA.
• Revision 16a of the SRP protocol has been approved as an official ANSI standard in 2007.
SRP and SCSI

- SRP defines a SCSI transport layer.
- Enables supports for e.g. these SCSI features:
 - Reading and writing data blocks.
 - Read capacity.
 - Command queueing.
 - Multiple LUNs per SCSI host.
 - Inquire LUN information, e.g. volume identification, caching information and thin provisioning support (a.k.a. TRIM / UNMAP).
 - Atomic (vectored) write - helps to make database software faster.
 - VAAI (WRITE SAME, UNMAP, ATS, XCOPY).
 - End-to-end data integrity (a.k.a. T10-PI).
 - Persistent reservations a.k.a. cluster support.
 - Asymmetric Logical Unit Access (ALUA).
- Fusion-io is actively involved in the ANSI T10 committee for standardization of new SCSI commands.
SRP Protocol - Login

• IB spec defines *device management*.
• Initiator sends device management query to subnet manager.
• Subnet manager reports ports with device management capabilities.
• Initiator sends I/O controller query to each port with device management capabilities.
• SRP target reports I/O controllers.
• Initiator sends login request to selected I/O controllers.
• Initiator requests SCSI LUN report and queries capacity and identification of each LUN.
• I/O starts.
Linux SRP Initiator Support

- Kernel driver ib_srp - implements SRP protocol.
- User space srptools package.
- srp_daemon and ibsrpdm executables.
 - Target discovery.
 - Target login.
- Interface between kernel and user space
 - /sys/class/infiniband_srp/srp-${port}/add_target
 - /sys/class/srp_remote_ports
 - /sys/class/scsi_host/*/sgid,dgid,...
 - /sys/class/scsi_device/*/state,queue_depth,...
SRP Login - Example

```bash
# cat /etc/srp_daemon.conf
a queue_size=128,max_cmd_per_lun=128
# srp_daemon -oaecd/dev/infiniband/umad1
id_ext=0002c90300fc3210,ioc_guid=0002c90300fc3210,dg id=fe8000000000000000000002c90300fc3211,pkey=ffff,service _id=0002c90300fc3210
id_ext=0002c90300a543b0,ioc_guid=0002c90300a543b0,d gid=fe8000000000000000000002c90300fc3221,pkey=ffff,servic e_id=0002c90300a543b0
[ ... ]
# ls /sys/class/srp_remote_ports/
port-453:1 port-459:1 [ ... ]
# lsscsi
[5:0:0:0]   disk   FUSIONIO ION LUN          3243  /dev/sdc
[5:0:0:1]   disk   FUSIONIO ION LUN          3243  /dev/sdd
```

April 2-3, 2014 #2014IBUG
Recent SRP Initiator Changes

- Queue size is now configurable. Optimal performance for SSDs and hard disk RAID arrays can only be achieved with a large queue size (128 instead of the default 64).
- Support for modifying the queue depth dynamically has been added.
- Path loss detection time has been reduced from about 40s to about 17s. Further reduction is possible by lowering the subnet timeout on the subnet manager. This makes a significant difference in H.A. setups.
- Added support for `fast_io_fail_tmo` and `dev_loss_tmo` parameters for multipath.
- P_KEY support has been added in srp_daemon.
- Many smaller changes in the srptools package.
OFED and SRP Support

<table>
<thead>
<tr>
<th></th>
<th>ib_srp</th>
<th>srptools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream Linux kernel</td>
<td>3.14.0</td>
<td>1.0.2</td>
</tr>
<tr>
<td>RHEL 6.5</td>
<td>2.6.32+</td>
<td>0.0.4</td>
</tr>
<tr>
<td>SLES 11 SP3</td>
<td>3.0.101</td>
<td>0.0.4</td>
</tr>
<tr>
<td>MLNX OFED 2.1</td>
<td>3.13.0</td>
<td>1.0.0</td>
</tr>
<tr>
<td>OFED 3.12</td>
<td>3.12.0</td>
<td>1.0.2</td>
</tr>
</tbody>
</table>

Fusion-io is working with Linux distribution vendors to keep SRP support up to date.
SRP Initiator and SCSI Core

- Linux SRP initiator is a SCSI driver.
- Linux SCSI mid-layer builds on block layer.
- SRP initiator relies on SCSI core for LUN scanning, SCSI error handling, ...
- Path removal triggers a call of scsi_remove_host().
- Path removal during I/O works reliably since Linux kernel 3.8.
- Fusion-io contributed several patches to make the Linux SCSI core and block layer handle path removal during I/O reliably.
Possible Future Directions

• Improving Linux SCSI performance via the scsi-mq project.
• Higher bandwidth by using multiple RDMA channels.
• Latency reduction.
• NUMA performance improvements.
• FRWR support - needed e.g. for ConnectIB HCA support.
• End-to-end data integrity (T10-PI) support; supported by Oracle database software. Builds on FRWR support.
• Adding SR-IOV support.
• Support for Ethernet networks (RoCE and/or iWARP).
 – Requires to switch from IB/CM to RDMA/CM.
 – Requires modification of the target discovery software (srptools). The current target discovery software is based on InfiniBand MADs.