iWARP Update

#OFADevWorkshop
Increasing interest in iWARP

- RDMA Use Cases
 - High Performance Computing
 - File and Block Storage
 - NVM access
 - Virtual Machine migration
 - Low-latency messaging middleware
 - Virtualization and Cloud deployments place important requirements on these use cases

- Key iWARP value propositions for these use cases
 - Engineered for “typical” Ethernet (best effort, no DCB, no QCN, etc)
 - Natively Routable
 - Multi-pathing supported at Layer 3 (as well as Layer 2)
 - Reliable and proven TCP Transport
 - Mature and efficient retransmission algorithms
 - Dynamic and verified congestion algorithms
iWARP Standards

- iWARP updates and enhancements are handled by the IETF STORM (Storage Maintenance) working group

- Finalized RFCs

 RFC 5040 A Remote Direct Memory Access Protocol Specification
 RFC 5041 Direct Data Placement over Reliable Transports
 RFC 5044 Marker PDU Aligned Framing for TCP Specification
 RFC 6580 IANA Registries for the RDDP Protocols
 RFC 6581 Enhanced RDMA Connection Establishment
iWARP In-Progress RFCs

• draft-ietf-storm-rdmap-ext-09.txt
 – Extends RFC 5040
 • Adds Atomic Operations and Immediate Data
 – Authors from Intel, Broadcom, Chelsio
 – IESG approved. Next step RFC Editor Queue

• draft-ietf-wood-rdmap-ext-v2-00.txt
 – Extends RFC 5040
 • Add Send with Immediate Data
 • Add IB-style RDMA Read
 – Authors from Intel
 – Submitted for initial review by STORM working group
Traditional iWARP RDMA Read

- **SQ WQE**: RDMA Read op
 - STag describing Sink buffer
 - STag describing Source buffer

- **Sink Buffer**
 - DMA Write

- **RDMA NIC**
 - RDMA Read Request message with
 - STag describing Source buffer and
 - STag describing Sink buffer

- **Source Buffer**
 - DMA Read
 - RDMA Read Response with Data and
 - STag describing Sink buffer

- **Local Invalidate op**
 - STag describing Sink buffer

This slide has animations – view in Presentation mode.
IB-style RDMA Read

SQ WQE
RDMA Read op
SGL describing Sink buffers
R_Key or STag describing Source buffer

Sink Buffer
Sink Buffer
Sink Buffer

RDMA NIC

RDMA Read Request message with
R_Key or STag describing Source buffer

RDMA NIC

DMA Writes

DMA Read

RDMA Read Response with Data

No Sink Buffer Local
Invalidate required, because
Sink buffer R_Key (STag)
not exposed to network

Source Buffer

In-progress RFCs enable this flow on iWARP

This slide has animations – view in Presentation mode
Goal of In-Progress RFCs

• Common Application capabilities across all flavors of RDMA
• These RFCs remove all known application differences between iWARP and InfiniBand
iWARP currently leverages:
 - TCP
 • Reliable transport and congestion management
 - Explicit Congestion Notification
 • Inherited from TCP/IP layers

iWARP will naturally adopt/use:
 - Tunneling/Network Overlays
 • iWARP works with (but does not require) existing tunnel protocols (ie Generic Routing Encapsulation) and NVO3 technology investigations

Connectionless messaging to complement iWARP RDMA
 - Typically realized with unreliable datagrams (unicast and multicast)
 - InfiniBand has Unreliable Datagram (UD)
 - UDP may be used in place of UD for Ethernet implementations
 • No new wire protocol standards required
iWARP Ecosystem

• Strong industry support to evolve iWARP
• Good alignment with IETF, and support in STORM to evolve the standards
• OFED 3.5-2 stable drivers from multiple vendors: cxgb3, cxgb4, nes
• Intel is implementing iWARP RDMA as a key capability in Fort Park. Fort Park is an Ethernet IP block that will be integrated into future Intel server chipsets.
Call to Action

• Participate in STORM standards reviews
• iWARP RNIC vendors and system software vendors consider supporting the in-progress RFCs as soon as possible
• Develop future RDMA extensions with a goal to enable them across all flavors of RDMA
Thank You