On Demand Paging (ODP) Update

Liran Liss
Mellanox Technologies
Agenda

- Introduction
- Implementation notes
- APIs and usage
- Statistics
- What’s new
Memory Registration Challenges

- Registered memory size limited to physical memory
- Requires special memory locking privileges
- Registration is a costly operation
- Requires careful application design for high performance
 - Bounce buffers
 - Pin-down caches
- Keeping address space and registered memory in synch is hard and error prone
On Demand Paging

• MR pages are *never* pinned by the OS
 – Paged in when HCA needs them
 – Paged out when reclaimed by the OS
• HCA translation tables may contain non-present pages
 – Initially, a new MR is created with non-present pages
 – Virtual memory mappings don’t necessarily exist
• Advantages
 – Greatly simplified programming
 • Reduce/eliminate registrations, no copying, no caches
 – Unlimited MR sizes
 • No need for special privileges
 – Physical memory optimized to hold current working set
 • For both CPU and IO access
ODP promise:
IO virtual address mapping == Process virtual address mapping
Implementation

- ib_core
- mlx5_core/mlx5_ib
- Key->MR tree
- MR interval tree
- HCA
- MR
 - umem
 - Page/DMA list
 - mlx5_ib_mr
 - HW translation tables
- QP page fault event
- mmu_notifier page invalidation
enum odp_transport_cap_bits {
 ODP_SUPPORT_SEND = 1 << 0,
 ODP_SUPPORT_RECV = 1 << 1,
 ODP_SUPPORT_WRITE = 1 << 2,
 ODP_SUPPORT_READ = 1 << 3,
 ODP_SUPPORT_ATOMIC = 1 << 4,
};

enum odp_general_caps {
 ODP_SUPPORT = 1 << 0,
};

struct ibv_odp_caps {
 uint32_t comp_mask;
 uint32_t general_caps;
 struct {
 uint32_t rc_odp_caps;
 uint32_t uc_odp_caps;
 uint32_t ud_odp_caps;
 uint32_t xrc_odp_caps;
 } per_transport_caps;
};

int ibv_query_odp_caps(struct ibv_context *context,
 struct ibv_odp_caps *caps,
 size_t caps_size);
ODP Memory Regions

- Registering the whole address space
 - `ibv_reg_mr(pd, NULL, (u64) -1, flags)`
 - Memory windows may be used to provide granular remote access rights

```c
enum ibv_access_flags {
    IBV_ACCESS_LOCAL_WRITE = 1,
    IBV_ACCESS_REMOTE_WRITE = (1<<1),
    IBV_ACCESS_REMOTE_READ = (1<<2),
    IBV_ACCESS_REMOTE_ATOMIC = (1<<3),
    IBV_ACCESS_MW_BIND = (1<<4),
    IBV_ACCESS_ON_DEMAND = (1<<5)
};

struct ibv_mr *ibv_reg_mr(struct ibv_pd *pd, void *addr,
                           size_t length, int access);
```
int main()
{
 struct ibv_odp_caps caps;
 ibv_mr *mr;
 struct ibv_sge sge;
 struct ibv_send_wr wr;
 ...
 if (ibv_query_odp_caps(ctx, &caps, sizeof(caps)) ||
 !(caps.ud_odp_caps & ODP_SUPPORT_SEND))
 return -1;
 ...
 p = mmap(NULL, 10 * MB, PROT_READ | PROT_WRITE, MAP_SHARED, 0, 0);
 ...
 mr = ibv_reg_mr(ctx->pd, p, 10 * MB, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_ON_DEMAND);
 ...
 sge.addr = p;
 sge.lkey = mr->lkey;
 ibv_post_send(ctx->qp, &wr, &bad_wr);
 ...
 munmap(p, 1 * MB);
 p = mmap(p, 1 * MB, PROT_READ | PROT_WRITE, MAP_SHARED, 0, 0);
 ...
 ibv_post_send(ctx->qp, &wr, &bad_wr);
 ...
 return 0;
}
Memory Prefetching

• Best effort hint
 – Not necessarily all pages are pre-fetched
 – No guarantees that pages remain resident
 – Asynchronous
 • Can be invoked opportunistically in parallel to IO

• Use cases
 – Avoid multiple page faults by small transactions
 – Pre-fault a large region about to be accessed by IO

•EFAULT returned when
 – Range exceeds the MR
 – Requested pages not part of address space

```
struct ibv_prefetch_attr {
    uint32_t comp_mask;
    int flags; /* IBV_ACCESS_LOCAL_WRITE */
    void *addr;
    size_t length;
};

int ibv_prefetch_mr(struct ibv_mr *mr,
                     struct ibv_prefetch_attr *attr,
                     size_t attr_size);
```
Statistics

• Core statistics
 – Maintained by the IB core layer
 – Tracked on a per device basis
 – Reported by sysfs

• Use cases
 – Page fault pattern
 • Warm-up
 • Steady state
 – Paging efficiency
 – Detect thrashing
 – Measure pre-fetch impact

/sys/class/infiniband_verbs/uverbs<dev-idx>/
 invalidations_faults_contentions
 num_invalidation_pages
 num_invalidations
 num_page_fault_pages
 num_page_faults
 num_prefetches_handled

<table>
<thead>
<tr>
<th>Counter name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>invalidations_faults_contentions</td>
<td>Number of times that page fault events were dropped or prefetch operations were restarted due to OS page invalidations</td>
</tr>
<tr>
<td>num_invalidation_pages</td>
<td>Total number of pages invalidated during all invalidation events</td>
</tr>
<tr>
<td>num_invalidations</td>
<td>Number of invalidation events</td>
</tr>
<tr>
<td>num_page_fault_pages</td>
<td>Total number of pages faulted in by page fault events</td>
</tr>
<tr>
<td>num_page_faults</td>
<td>Number of page fault events</td>
</tr>
<tr>
<td>num_prefetches_handled</td>
<td>Number of prefetch Verb calls that completed successfully</td>
</tr>
</tbody>
</table>
Statistics (continued)

• Driver debug statistics
 – Maintained by the mlx5 driver
 – Tracked on a per device basis
 – Reported by debugfs

• Use cases
 – Track accesses to non-mapped memory
 – ODP MR usage

/sys/kernel/debug/mlx5/<pci-dev-id>/odp_stats/
 num_failed_resolutions
 num_mrs_not_found
 num_odp_mr_pages
 num_odp_mrs

<table>
<thead>
<tr>
<th>Counter name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>num_failed_resolutions</td>
<td>Number of failed page faults that could not be resolved due to non-existing mappings in the OS</td>
</tr>
<tr>
<td>num_mrs_not_found</td>
<td>Number of faults that specified a non-existing ODP MR</td>
</tr>
<tr>
<td>num_odp_mr_pages</td>
<td>Total size in pages of current ODP MRs</td>
</tr>
<tr>
<td>num_odp_mrs</td>
<td>Number of current ODP MRs</td>
</tr>
</tbody>
</table>
News

• Connect-IB Support
 – Initially UD and RC
 • DC will follow
 – Address space key for local access
• Initial testing with OpenMPI
 – No more memory hooks!
• Release planned for MLNX_OFED-2.3
• ODP patches submitted to kernel
Thank You