SRP and the scsi-mq Project

Bart Van Assche,
Overview

• Involvement with SRP.
• About storage API's.
• The Linux kernel, blk-mq and scsi-mq.
• SRP and the scsi-mq project.
Involvement with SRP

- Maintaining the open source Linux SRP initiator and the SCST SRP target drivers.
- Member of the Fusion-io ION team. ION is an all-flash H.A. shared storage appliance.
- Flash memory provides low latency and high bandwidth.
- The focus of RDMA is on low latency and high bandwidth.
- In other words, RDMA is well suited for remote access to flash memory.
About Storage API's (1/3)

• KVM = Kernel-based Virtual Machine, a hypervisor.
• KVM allows guests e.g. to access resources on the host system, e.g. block storage.
• KVM guests use paravirtualized drivers like virtio-blk and virtio-scsi.
• In 2007 the KVM virtio-blk driver was added to the Linux kernel [Ru08].
• virtio-blk provides a block device API to guests.
• Over time the KVM maintainers found themselves adding more and more SCSI features to the virtio-blk driver, e.g. disk identification and whether writeback is supported.
• In 2012 the virtio-scsi driver was merged in the Linux kernel.
Motivation for introducing the virtio-scsi driver:

The virtio-scsi HBA is the basis of an alternative storage stack for QEMU-based virtual machines (including KVM). Compared to virtio-blk it is more scalable, because it supports many LUNs on a single PCI slot), more powerful (it more easily supports pass-through of host devices to the guest) and more easily extensible (new SCSI features implemented by QEMU should not require updating the driver in the guest) [Bo12].
About Storage API's (3/3)

- In other words ...
- A storage API must provide more functionality than only reading and writing blocks.
- There is a real need for the functionality present in the SCSI protocol.
SRP and SCSI

• SRP defines a SCSI transport layer.
• Enables supports for e.g. these SCSI features:
 – Reading and writing data blocks.
 – Read capacity.
 – Command queueing.
 – Multiple LUNs per SCSI host.
 – Inquire LUN information, e.g. volume identification, caching information and thin provisioning support (a.k.a. TRIM / UNMAP).
 – Atomic (vectored) write - helps to make database software faster.
 – VAAI (WRITE SAME, UNMAP, ATS, XCOPY).
 – End-to-end data integrity (a.k.a. T10-PI).
 – Persistent reservations a.k.a. cluster support.
 – Asymmetric Logical Unit Access (ALUA).
• Fusion-io is actively involved in the ANSI T10 committee for standardization of new SCSI commands.
Today some storage drivers are capable of more than one million IOPS: high-end SSDs and storage over fast networks.

Some Linux kernel block drivers achieve up to 3 million IOPS.

Linux SCSI kernel drivers achieve up to 1 million IOPS.

Dilemma for high-end storage device driver developers: high performance and limited functionality (block driver) or limited performance and full functionality (SCSI driver)?

Traditional Linux block layer triggers lock contention on multicore systems.

Multi-queue block layer (blk-mq) eliminates lock contention.

Has been merged in Linux kernel version 3.13 [Bj13].

Fusion-io has asked Christoph Hellwig to rewrite the Linux SCSI mid-layer as a multi-queue block driver (scsi-mq).
Traditional Linux Block Layer

User space

Process 1

Process 2

Kernel

Filesystem

One request queue per block device

Block driver

PCIe storage device, HBA or HCA
Multi-queue Block Layer

User space

Kernel

Filesystem

One request queue per CPU and per block device

Block driver

PCIe storage device, HBA or HCA
Advantages of the blk-mq approach

- One request queue per CPU eliminates lock contention.
- Certain SSD's and RDMA HCA's support multiple hardware queues and multiple MSI-X vectors.
- Using multiple hardware queues reduces contention and allows to spread interrupt load over multiple CPU cores.
- An example of multiple MSI-X vectors allocated for one IB port:

  ```bash
  # sed -n 's/^([^:]*)\.*\(mlx4-ib-1-.@PCI Bus 0000:21\)\([^/\]*/ \1 \2/p' /proc/interrupts
  175: mlx4-ib-1-0@PCI Bus 0000:21
  176: mlx4-ib-1-1@PCI Bus 0000:21
  177: mlx4-ib-1-2@PCI Bus 0000:21
  178: mlx4-ib-1-3@PCI Bus 0000:21
  179: mlx4-ib-1-4@PCI Bus 0000:21
  180: mlx4-ib-1-5@PCI Bus 0000:21
  181: mlx4-ib-1-6@PCI Bus 0000:21
  182: mlx4-ib-1-7@PCI Bus 0000:21
  ```
Current scsi-mq Status

- Traditional SCSI core is implemented as a block driver.
- scsi-mq = SCSI core based on the multiqueue block layer (blk-mq).
- One request queue per CPU and per LUN.
- Preliminary results for multi-queue support in the SRP initiator driver:
 - Very significant CPU usage reduction - up to 250%.
 - Higher IOPS when using multiple RDMA channels.
 - Higher bandwidth when using multiple RDMA channels.
- Latest scsi-mq patches have been posted on March 17 on the linux-scsi and linux-kernel mailing lists [Ch14].
- Open issues:
 - Implementing multiple hardware queues in a SCSI driver is possible but is not yet integrated with the blk-mq layer.
 - Hardware queues are per LUN instead of per SCSI host. This means "queue full" detection is done by the SCSI layer instead of the block layer.
 - There is one tag pool per hardware queue so the "one hardware queue" model is a contention point on NUMA systems.
References

Thank You