
The SNIA

NVM Programming Model

#OFADevWorkshop

NVMe & STA SNIA

NVM Express/SCSI Express: Optimized storage interconnect & driver

SNIA NVM Programming TWG: Optimized system & application software

From Jim Pappas, Intel, SNIA NVM Summit

Opportunities with Next

Generation NVM

2

SNIA NVM Programming Model

Version 1

• Approved by SNIA in December 2014
• Downloadable by anyone

• Expose new features of block and file to applications
• Atomicity capability and granularity

• Thin provisioning management

• Use of memory mapped files for persistent memory
• Existing abstraction that can act as a bridge to higher value from persistent memory

• Limits the scope of re-invention from an application point of view

• Open source implementations already available for incremental innovation (e.g. PMFS)

• Programming Model, not API
• Describes behaviors in terms of actions

• Facilitates discovery of capabilities using attributes

• Usage illustrated as Use Cases

• Implementations map actions and attributes to API elements

Conventional Block and File

Modes
BLOCK mode describes

extensions:

• Atomic write features

• Granularities (length,

alignment)

• Thin Provisioning

Management

FILE mode describes

extensions:

• Discovery and use of

atomic write features

• The discovery of

granularities (length,

alignment

characteristics)
Memory Mapping in NVM.FILE mode uses

volatile pages and writes them to disk or SSD

Application

NVM block capable driver

File system

Application

NVM device NVM device

User space

Kernel space

Native file
API

NVM.BLOCK mode

NVM.FILE mode

Persistent Memory (PM)

• Is

– Byte addressable from programmer’s point of view

– Load/Store access

– Memory-like performance (stalls CPU loads)

– DMA-able including RDMA

• Is Not

– Prone to unexpected latencies

• Demand paging

• Page Cache

– Durable until data is flushed

• Think Battery Backed RAM

March 30 – April 2, 2014 #OFADevWorkshop 5

Persistent Memory Modes

NVM.PM.VOLUME mode

provides a software

abstraction to OS

components for Persistent

Memory (PM) hardware:

• List of physical address

ranges for each PM

volume

• Thin provisioning

management

NVM.PM.FILE mode

describes the behavior for

applications accessing

persistent memory

including:

• mapping PM files (or

subsets of files) to virtual

memory addresses

• syncing portions of PM

files to the persistence

domain

Memory Mapping in NVM.PM.FILE mode enables direct

access to persistent memory using CPU instructions

Application

PM device PM device PM device. . .

User space

Kernel space

MMU
MappingsPM-aware file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware kernel module

PM device

NVM.PM.VOLUME mode

NVM.PM.FILE mode

Expected usage of PM modes

• Uses for NVM.PM.VOLUME

– Kernel modules

– PM aware file systems

– Storage stack components

• Uses for NVM.PM.File

– Applications

• Persistent datasets, directly addressable, no DRAM footprint

• Persistent caches (warm cache effect)

– Reconnect-able blobs of persistence

• Naming

• Permissions

March 30 – April 2, 2014 #OFADevWorkshop 7

Beyond V1:

Investigating new work items

Three new work items are under investigation

1) Software hints
– Application usage, access patterns

– Optimization based on discovered device attributes

– Present hints emerging in standards (SCSI, NVMe) to applications

2) Atomic transactional behavior
– Add atomicity and recovery to programming model

– Not addressed by current sync semantics

3) Remote access
– Disaggregated memory

– RDMA direct to NVM

– High availability, clustering, capacity expansion use cases

RDMA Challenge

• Use case:
– RDMA copy from local to remote persistent memory

– for high availability memory mapped files

– built on NVM.PM.FILE from version 1 programming model

• Requirements:

– Assurance of remote durability (remote sync?)

– Efficient byte range access (scatter gather RDMA?)

– Efficient addressing (late binding without connection teardown?)

– Efficient write security given fixed addressing in file context

– Resource recovery and hardware fencing after failure

Summary

• The NVM Programming Model is aligning the industry

– Gaining common terminology

– Not forcing specific APIs

– http://snia.org/forums/sssi/nvmp

• What are we doing with it?

– PM models expose it

• Linux PMFS at https://github.com/linux-pmfs

– New PM models build on existing ones

• Linux Pmem Examples: https://github.com/pmem/linux-examples

• New TWG work items

• Emerging technologies will drive increasing work in

this area as cost comes down
March 30 – April 2, 2014 #OFADevWorkshop 10

http://snia.org/forums/sssi/nvmp
https://github.com/linux-pmfs
https://github.com/linux-pmfs
https://github.com/linux-pmfs
https://github.com/pmem/linux-examples
https://github.com/pmem/linux-examples
https://github.com/pmem/linux-examples

#OFADevWorkshop

Thank You

