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SNIA NVM Programming Model 

Version 1 

• Approved by SNIA in December 2014 
• Downloadable by anyone 

• Expose new features of block and file to applications 
• Atomicity capability and granularity 

• Thin provisioning management 

• Use of memory mapped files for persistent memory 
• Existing abstraction that can act as a bridge to higher value from persistent memory 

• Limits the scope of re-invention from an application point of view 

• Open source implementations already available for incremental innovation (e.g. PMFS) 

• Programming Model, not API 
• Describes behaviors in terms of actions 

• Facilitates discovery of capabilities using attributes 

• Usage illustrated as Use Cases 

• Implementations map actions and attributes to API elements 



Conventional Block and File 

Modes 
BLOCK mode describes 

extensions: 

• Atomic write features  

• Granularities (length, 

alignment) 

• Thin Provisioning 

Management 

FILE mode describes 

extensions: 

• Discovery and use of 

atomic write features  

• The discovery of 

granularities (length, 

alignment 

characteristics) 
Memory Mapping in NVM.FILE mode uses 

volatile pages and writes them to disk or SSD 
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Persistent Memory (PM) 

• Is 

– Byte addressable from programmer’s point of view 

– Load/Store access 

– Memory-like performance (stalls CPU loads) 

– DMA-able including RDMA 

• Is Not 

– Prone to unexpected latencies 

• Demand paging 

• Page Cache  

– Durable until data is flushed 

• Think Battery Backed RAM 
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Persistent Memory Modes 

NVM.PM.VOLUME mode 

provides a software 

abstraction to OS 

components for Persistent 

Memory (PM) hardware: 

• List of physical address 

ranges for each PM 

volume 

• Thin provisioning 

management 

NVM.PM.FILE mode 

describes the behavior for 

applications accessing 

persistent memory 

including: 

• mapping PM files (or 

subsets of files) to virtual 

memory addresses 

• syncing portions of PM 

files to the persistence 

domain 

Memory Mapping in NVM.PM.FILE mode enables direct 

access to persistent memory using CPU instructions 

Application
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Expected usage of PM modes 

• Uses for NVM.PM.VOLUME 

– Kernel modules 

– PM aware file systems 

– Storage stack components 

• Uses for NVM.PM.File 

– Applications 

• Persistent datasets, directly addressable, no DRAM footprint 

• Persistent caches (warm cache effect) 

– Reconnect-able blobs of persistence 

• Naming 

• Permissions 
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Beyond V1: 

Investigating new work items 

Three new work items are under investigation 

1) Software hints 
– Application usage, access patterns 

– Optimization based on discovered device attributes 

– Present hints emerging in standards (SCSI, NVMe) to applications 

2) Atomic transactional behavior 
– Add atomicity and recovery to programming model 

– Not addressed by current sync semantics 

3) Remote access 
– Disaggregated memory 

– RDMA direct to NVM 

– High availability, clustering, capacity expansion use cases 



RDMA Challenge 

• Use case:  
– RDMA copy from local to remote persistent memory  

– for high availability memory mapped files  

– built on NVM.PM.FILE from version 1 programming model 

• Requirements: 

– Assurance of remote durability (remote sync?) 

– Efficient byte range access (scatter gather RDMA?) 

– Efficient addressing (late binding without connection teardown?) 

– Efficient write security given fixed addressing in file context 

– Resource recovery and hardware fencing after failure 

 

 



Summary 

• The NVM Programming Model is aligning the industry 

– Gaining common terminology 

– Not forcing specific APIs 

– http://snia.org/forums/sssi/nvmp  

• What are we doing with it? 

– PM models expose it 

• Linux PMFS at https://github.com/linux-pmfs   

– New PM models build on existing ones 

• Linux Pmem Examples: https://github.com/pmem/linux-examples 

• New TWG work items 

• Emerging technologies will drive increasing work in 

this area as cost comes down 
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