
Scalable Fabric Interfaces 

Sean Hefty 

Intel Corporation 

OFI software will be 
backward compatible 



OFI WG Charter 

2 

Develop an extensible, open source framework 

and interfaces aligned with ULP and application 

needs for high-performance fabric services 



Reduced cache and 
memory footprint 

Optimized software 
path to hardware 

•Independent of hardware 
interface, version, features 

More agile development 

•Time-boxed, iterative development 

•Application focused APIs 

•Adaptable 

Enable.. 

3 

Minimal footprint 
High performance 

App-centric 
Extensible 

Analyze application needs 

•Implement them in a coherent, concise, 
high-performance manner 



Minimal footprint 

How can an API affect 

application scalability? 

I’m glad I asked. 

4 



Communication 

struct rdma_route { 

 struct rdma_addr        addr; 

 struct ibv_sa_path_rec *path_rec; 

 ... 

}; 

 

struct rdma_cm_id {...}; 

 

rdma_create_id() 

rdma_resolve_addr() 

rdma_resolve_route() 

rdma_connect() 

Src/dst addresses stored per 
endpoint 

456 bytes per endpoint 

Path record per endpoint 

Resolve single address and 
path at a time 

All to all connected model for 
best performance 

Reliable data transfers, zero 
copies to thousands of processes 

5 



Scalable Communication 

• Application driven communication models 

• Reliable unconnected transfers 

– Abstract hardware features 

• SRQ, XRC, dynamic connections 

• Optimize addressing 

– Resolve multiple resolution requests at once 

– Compact address data storage 

• Compressed address ranges, path data 

• Support multiple resolution mechanisms 

– Optimized for different topologies and fabric sizes 

6 



SFI - Address Vectors 

Store addresses/host names 
- Insert range of addresses with single call 

Start Range End Range Base LID SL 

host10 host1000 50 1 

host1001 host4999 2000 2 

Share between processes 

Enable provider optimization techniques 
- Greatly reduce storage requirements 

Reference entries by 
handle or index 
- Handle may be encoded 
   fabric address 
Reference vector for 
group communication 

Example only 

7 



Can API changes unlock 

higher performance? 

Just a guess, but is 

the answer “yes”? 

High performance 

8 



Application Send 

struct ibv_sge { 

 uint64_t  addr; 

 uint32_t  length; 

 uint32_t  lkey; 

}; 

 

struct ibv_send_wr { 

 uint64_t   wr_id; 

 struct ibv_send_wr *next; 

 struct ibv_sge     *sg_list; 

 int     num_sge; 

 enum ibv_wr_opcode opcode; 

 int     send_flags; 

 uint32_t   imm_data; 

 ... 

}; 

9 

Application request 

<buffer, length, context> 

3 x 8 = 24 bytes of data needed 

SGE + WR = 88 bytes allocated 

Requests may be linked - 
next must be set to NULL 

Must link to separate SGL 
and initialize count 

App must set and provider 
must switch on opcode 

Must clear flags 28 additional bytes initialized 

Significant SW overhead 



Provider Send 

For each work request 

 Check for available queue space 

 Check SGL size 

 Check valid opcode 

 Check flags x 2 

 Check specific opcode 

 Switch on QP type 

  Switch on opcode 

 Check flags 

  For each SGE 

   Check size 

   Loop over length 

 Check flags 

 Check 

 Check for last request 

Other checks x 3 

10 

19+ branches including loops 

100+ lines of C code 
50-60 lines of code to HW 

Most often 1 
(overlap operations) 

Often 1 or 2 
(fixed in source) 

Artifact of API 

QP type usually fixed in 
source 

Flags may be fixed or app 
may have taken branches 



Scalable Transfer Interfaces 

• Application optimized code paths based on 

usage model 

• Optimize call(s) for single work request 

– Single data buffer or 2-entry SGL 

– Still support more complex WR lists/SGL 

• Per endpoint send/receive operations 

– Separate RMA function calls 

• Pre-configure data transfer flags 

– Known before post request 

– Select software path through provider 

11 



SFI – Send Message 

Allocate WR 

Allocate SGE 

Format SGE – 3 writes 

Format WR – 6 writes 

 

 

Loop 1 

 Checks – 9 branches 

 Loop 2 

   Check 

   Loop 3 

 Checks – 3 branches 

Checks – 3 branches 

Direct call – 3 writes 

 

 

Checks – 2 branches 

12 

50-60 lines of C-code 25-30 lines of C-code 

generic send call 

optimized send call 

Reduce setup cost 
-  Tighter data 

Eliminate loops and branches 
-  Remaining branches predictable 

Selective optimization paths to HW 
-  Manual function expansion 



Completions 

struct ibv_wc { 

 uint64_t  wr_id; 

 enum ibv_wc_status status; 

 enum ibv_wc_opcode opcode; 

 uint32_t  vendor_err; 

 uint32_t  byte_len; 

 uint32_t  imm_data; 

 uint32_t  qp_num; 

 uint32_t  src_qp; 

 int    wc_flags; 

 uint16_t  pkey_index; 

 uint16_t  slid; 

 uint8_t   sl; 

 uint8_t   dlid_path_bits; 

}; 

13 

Application accessed fields 

Provider must fill out all fields, 
even those ignored by the app 

Developer must determine if fields 
apply to their QP 

App must check both return code 
and status to determine if a 

request completed successfully 

Single structure is 48 bytes 
likely to cross cacheline boundary 

Provider must handle all types of 
completions from any QP 



Scalable Completion Interfaces 

• Application optimized code paths based on 

usage model 

• Use compact data structures 

– Only needed data exchanged across interface 

– Limited to fields required by application 

– Separate addressing from completion data 

– Report errors ‘out of band’ 

• Per CQ operations 

– Support multiple wait objects 

– Allow provider to optimize event signaling 

14 



SFI – Events 

15 

read CQ optimized CQ 

Generic 
completion Op context 

Send: +4-6 writes, +2 branches 
Recv: +10-13 writes, +4 branches 

+1 write, +0 branches 

App selects 
completion structure 

Support provider 
updating counters 



16 

Is there anything else 

behind this proposal? 

I have two more 

puzzle pieces. 

App-centric 



Application Interface Mismatch 

875 809 

518 518 

0

200

400

600

800

1000

1200

1400

1600

MVAPICH2-Dynamic-Link MVAPICH2-Static-IPO-Link

In
st

ru
ct

io
n

s 
R

et
ir

ed
 

(l
o

w
er

 is
 b

et
te

r)
 

MPI_Isend Verbs

MVAPICH2-2.0rc1 (latest) code is used with default configuration options (CH3:mrail) 

All userspace instructions are counted for full execution of MPI_Isend 

Memory copies and locks are also included in the component that uses them 

1393 1327 

MVAPICH2 lib compile flags: ‘-O3 –DNDEBUG –ipo’ 

App compile flags: ‘-O3 –DNDEBUG –ipo -finline-limit=2097152 -no-inline-factor -inline-max-per-routine=10000000  

-inline-max-per-compile=10000000 -Bstatic -lmpich -Bdynamic -lopa -lmpl -libverbs -libumad -libmad -lrdmacm -lrt -lpthread 

Instructions retired 
in MPI_Isend 

Lookup connection, check 
memory registration, 

formatting requests, etc. 

17 



Application-Centric Interfaces 

• Collect application requirements 

• Identify common, fast path usage models 

– Too many use cases to optimize them all 

• Build primitives around fabric services 

– Not device specific interface 

18 

Reducing instruction count requires 

a better application impedance match 



Application-Centric Interfaces 

• Myth: app-centric interfaces imply more overhead 

– Poor implementations result in poor performance 

– Difficult to use APIs are likely to result in poor 

implementations 

– Provider knows best method for accessing their HW 

– These are still low-level interfaces (C), just not device 

interfaces (assembly) 

 

19 



Application Configured Interfaces 

20 

lg. msg RMA 

NIC 

Message Queue Ops RMA Ops 

Endpoint 

Communication type 

Capabilities 

Data transfer flags 

sm. msg 

inline send send write 

read 

Provider directs 
app to best API sets 

App specifies 
comm model 



21 

What’s the purple piece 

representing again? 

Extensible 



Extensible Framework 

• Take growth into consideration 

• Reduce effort to incorporate new application 

features 

– Addition of new interfaces, structures, or fields 

– Modification of existing functions 

• Allow time to design new interfaces correctly 

– Support prototyping interfaces prior to integration 

 
22 

Focus on longer-lived interfaces – 

software leading hardware 



Future Extensions 

• Design framework and APIs with anticipated 

capabilities 

– Stage delivering features 

• Documentation defines supported usage models 

• Use static inline calls to simplify application 

interactions with objects 

– Convert object-oriented model to procedural model 

23 



Claim 

• These concepts are 

necessary, not revolutionary 

– Communication addressing, 

optimized data transfers, app-

centric interfaces, future looking 

• Want a solution where the 

pieces fit tightly together 

24 



Thank you! 

25 


