OPENFABRICS The Non-Volatile Memory Verbs Provider (NVP):
Using the OFED Framework to access
solid state storage

Bernard Metzlerl, Animesh Trivedil,
Lars Schneidenbach?, Michele Franceschini?,
Patrick Stuedil, Blake Fitch?

11BM Zurich Research, 21BM T.J. Watson Research Center

Overview &D

Questions

Can we learn from the past of networking stack
design to improve storage stack design?

Are there even synergies between those
two stacks?

04/15/13

A Look back into 1993

Abstract—Network speeds are increasing rapidly. The higher
bandwidth communication links available now, ranging from
100 Mb/s to Gb/s, present considerable potential for distributed
applications, Host processing speeds, when instructions or data
are in cache, have also been increasing rapidly. However, the
ultimate throughput delivered to the user application has not

increased as rapidly. Network /O is becoming the bottleneck.
Better designs for the network interfaces, system architecture,
and host software structure are essential to take full advantage of
the higher-speed communication links. At the same time, there is
tremendous pressure to keep the cost of network interconnection
low so that these new higher-bandwidth links proliferate rapidly,
especially for workstations.

Ramakrishnan, K.K.

Performance considerations in desiinini network interfaces,

Present, Past and Future

———

CPU Speed Network BW Storage BW
1980 — 2010 1000x 3000x 50X
2010 — now 1-—1.5x 4 — 10x 10— 100x

« Until mid-2000s, storage was slow

— Milliseconds access time @ some MB/s, 100s of IOP’s, low density, stationary +

power hungry

* It has grown faster ever since
— Now ~100 ps access time @ 100s of MB/s, millions of IOP’s, high density,

mobile

« What will the future see?
— 50ns read, 1us write (PCM), ...

#OFADevWorkshop

04/15/13

Yesterdays Network architecture

» Bottleneck for then new technologies like IB or GbE
— Centralized, CPU orchestrated
— CPU intense communication buffer copy
— Unstructured byte stream data
— Socket (file w/o seek) abstraction for access

Today’s legacy 10-architecture

» Bottleneck for emerging storage technologies like NVM
— Centralized, CPU orchestrated
— CPU intense I/O data movement
— Block abstraction for data
— File abstraction for access

04/15/13

How Networking Stacks evolved (%

———— e —

From centralized OS service, via
Improved OS service efficiency, via
separation of control and data:
— Fine grained resource management
* OS controlled resource allocation on slow path

« HW assisted resource protection on the fast data path
— No CPU involvement/OS bypassing on fast data path

* To new communication semantics

04/15/13

Modern Network Stacks Opﬁﬂs

v’ Efficient host interface
v Direct and save mapping of HW control to application
v Application private communication channel
v' Operating system bypass
v Separation of control and data
v' Communication resource pre-allocation

user

o IHV lib
application

v’ Zero copy data movement i
v' Asynchronous data/completion path o o e
v" Synchronous completion support copieatr A
v Rich communication semantics L
v' send/receive generic HCAIRNIC

v’ read/write/atomics
v’ scatter/gather support

04/15/13

How NVM Integration evolves S5

ALLIANCE

———

= T = e -~

« NVM as ‘fast hard disk’ Core0 . Core n |
— Least intrusive/most economical e @ o2 “Q |
— Keeps block access i ! ﬁ !
« Host controller interfaces such as
— AHCI (HBA), SCSile, or
— NVMe for PCI Express attached SSDs Controller
« partitioning w/multiple name spaces, 3 NVMe

« parallel 10, SG support, S

« up to 64K I/0 Command Queues,
64K command depth, Completion Queues...,

* interrupt mapping, interrupt coalescing, CQ polling, doorbell

« Wil it be appropriate for next generation NVM technology?
— NAND — PCM: Write 500us — 1us, Read 25us — 50ns
— New architectures: Moneta-D, Gordon, NVHeap, FusionlO, ...

04/15/13

mma;

. __ (anonp mous pages)
[Applications (Processes) Talec
INUX -olac :

read(2)
write(2)

open(2)

OPENFABRICS

chmod(2)

-
=
a ‘stat(z)

A vy ALLIANCE
%k%edﬁ Network FS [pseu SPECiaIFS _—— —
irec purpose — -—#
Y —y— =- tonpts) rams) o
868 g1 o) @R e 2 @mms
. L—>=network
¢ Flle based I/O e Block 1/O Layer
. optional stackable dewces on to
« Centralized Block I/O Layer i - s
.. BIOs (Block 1/0)
» Page Cache for efficiency - <

SSD mimics NVM as HDD YO Scheduler
— least intrusive a";"dbmt
- performance Ilmltatlons hooked in Device Drivers

. (hook in similar like
Several new NVM drivers . mtoasked devices ke
. device mapper targets
— hook into BIO Layer \—i'é, T
— thus give block access EBEDo

— bypass legacy 1/O s \

(transportAattrlbutes) @nld layer

Transport Classes

scheduling
— bypass SCSI layer \

ENEIEES SCSI low layer
— no OS bypass on fast EENEETES iiegaraid sas) sacraid @a2x) lpfc
path ahc ata_pi F

— e.g.. NVMe, Fusion-I1O, \ o
Micron, ... ; \
\-5 @ =

Physical devices

http://www.thomas-krenn.com/en/oss/linux-io-stack-diagram.html
License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/

The Linux 1/O Stack Diagram (version 1.0, 2012-06-20)
Created by Werner Fischer and Georg Schonberger

04/15/13

RDMA

Network Moneta-D | Gordon NVHeap FusionlO
Efficient HW Access X X X X X
OS Bypass X X n/a n/a proprietary
Zero Copy X n/a X
Async. 1/0 X X X n/a X
Sync. Completion X n/a
Rich 1/0O Semantics X transaction proprietary

04/15/13

Proposal: Unified I/O Stack

— = — — ~ - —_— e

« Shortcut storage stack evolution: re-use NW stack
« User mapped I/O queues/channels
« Access abstraction: byte addressable access space
* 1/O request opcodes: Read/Write/Send/Recv/Atomics

« Higher level storage systems as first level citizens
» File-systems, databases, object stores, ...

« Translation of objects to I/O device address range
« File, database column, key/value item, ...
« Enables direct data transfer between device and object

* Unified
+ |/O semantics (work requests, event notification, polling, ...)

+ 1/O memory management
« Device management, device capability discovery, ...

04/15/13

Byte addressable Storage? &)

———— —

» Lowest level of access abstraction
« System I/O view: [PA, len]: NVM access above FTL
« Application view: [VA, len]: most concrete object representation
* [VA, len] to be mapped to Cligues

[key, offset, len] for access /
Cliques

« Advantages RN
 Efficient data 1/0O = NL ol

» Direct object reference

« Higher levels of abstraction
if needed

. Examp|eSZ (a) Graplll ksl P (b) Graph of Research Co-authorship
» Byte addressable object store
« Traversing nodes of terabyte graph, random pointer chasing
« Terabyte Sorting

04/15/13

A Unified Stack &)

lib_ext3
User-space

mapped I/O
A e channels

AN v

N-IF\driver N-IF driver VM driver
b

Operating Sysqem

NVM

NW Interfaces

04/15/13

What about OFED?

———

You guessed it
Unified IO 2 OpenFabrics

OFED: An (almost) perfect software environment
to access high-performance storage

e Letthe NVM device appear as an OFED RDMA verbs provider
« Communicate with a 'local storage peer
. Plug and Play: RDMA Read/Write to 'local peer":
. Zero copy NVM access
. Byte addressable
. Application private Queue Pairs, asynchronous operations, ...

04/15/13

. Prototype

. PCl attached flash adapter libibverbs
. . lib
« 'nvp' NVM OFED verbs provider with local peer AN an.,.: |
« NVP application Operation: device Doorbell syscall,: Ocopy
) management mapped QP/CQ I/O operation
« Open nvp OFED device, create PD os\ / :
o Regqister local target buffers (ibv reg mr())
_ o - OFA Core i
o Create QP and move itto RTS

. Post Receive's + Send's executing RPC to 'embedded
storage peer' (ESP) to learn partition parameters,
register I/O memory and associated RTag's

. Post READ/WRITE to read/write IO memory into/from
local registered buffer

. Mapped kernel QP/CQ, proprietary DB syscall

04/15/13

Application

PCI

HW control

1/0

Flash card

registered NVM

First simple tests:

. U-bench: low-level access inside driver, full
page (8k) transfer, physical addressing (upper
bound of what's possible from host side of PCle)

. FIO: single process, standard linux raw block
device, full page access

. NVP: single process, single QP, random read
test, full page access (* write measured in
different env. only)

550 (4k) 181 (4k) 140
1303 (8k) 264 (8K)

file buffer Application registered buffer
libibverbs
/. |__libnvp |
device Doorbell syscall, Ocopy
management mapped QP/CQ I/O operation
oS \. /
Linux FS OFA Core
nvp block v
driver P

HW control

registered NVM

04/15/13

Further Thoughts (%

Unified IO = OpenFabrics + x

X Memory registration model
x Currently based on RPC mechanism carried in Send/Receive work requests

x other ideas include:
. mr = ibv_reg mr (pd *, void *mem id, length,
IBV ACCESS xxx|IBV_ACCESS IOMEM)
x mem_id retrieved off-band from provider (via dedicated QP?)
x Overloads VA parameter, which would be NULL for IO memory

x Would also make send/receive RDMA model useable for data
(is that needed?)

X What else?

x All perfect?

04/15/13

Conclusion

ALLIANCE

« Storage stacks are on a familiar crossroad
— 1/O device performance catches up with CPU speed
— That’s what happened to NW performance before

* Do not re-invent the performance wheel
- Reuse matured S access
— Network Stack abstractions,

— frameworks, and
— APIs

v Integrate with OFED %

Asynch. 1/10

04/15/13

Thank You

#OFADevWorkshop

