
The Non-Volatile Memory Verbs Provider (NVP):

Using the OFED Framework to access

solid state storage

Bernard Metzler1, Animesh Trivedi1,

Lars Schneidenbach2, Michele Franceschini2,

Patrick Stuedi1, Blake Fitch2

1IBM Zurich Research, 2IBM T.J. Watson Research Center

04/15/13

Overview

Questions

Can we learn from the past of networking stack

design to improve storage stack design?

Are there even synergies between those

two stacks?

04/15/13

A Look back into 1993

Ramakrishnan, K.K.

Performance considerations in designing network interfaces,

IEEE Journal on Selected Areas in Communications, Feb 1993

04/15/13

Present, Past and Future

• Until mid-2000s, storage was slow

– Milliseconds access time @ some MB/s, 100s of IOP’s, low density, stationary +

power hungry

• It has grown faster ever since

– Now ~100 µs access time @ 100s of MB/s, millions of IOP’s, high density,

mobile

• What will the future see?

– 50ns read, 1µs write (PCM), ...

#OFADevWorkshop 4

CPU Speed Network BW Storage BW

1980 – 2010 1000x 3000x 50x

2010 – now 1 – 1.5x 4 – 10x 10 – 100x

04/15/13

Learning from the Past

Yesterdays Network architecture

 Bottleneck for then new technologies like IB or GbE
– Centralized, CPU orchestrated

– CPU intense communication buffer copy

– Unstructured byte stream data

– Socket (file w/o seek) abstraction for access

Today’s legacy IO-architecture

 Bottleneck for emerging storage technologies like NVM
– Centralized, CPU orchestrated

– CPU intense I/O data movement

– Block abstraction for data

– File abstraction for access

04/15/13

How Networking Stacks evolved

• From centralized OS service, via

• improved OS service efficiency, via

• separation of control and data:

– Fine grained resource management

• OS controlled resource allocation on slow path

• HW assisted resource protection on the fast data path

– No CPU involvement/OS bypassing on fast data path

• To new communication semantics

1980s 2000s

04/15/13

Modern Network Stacks

 Efficient host interface

 Direct and save mapping of HW control to application

 Application private communication channel

 Operating system bypass

 Separation of control and data

 Communication resource pre-allocation

 Zero copy data movement

 Asynchronous data/completion path

 Synchronous completion support

 Rich communication semantics

 send/receive

 read/write/atomics

 scatter/gather support

ib core

libibverbs/

librdmacm

HCA/RNIC

user

application

kernel

application

IHV lib

IHV driver DMA

generic

vendor specific

04/15/13

How NVM Integration evolves

• NVM as ‘fast hard disk’
– Least intrusive/most economical

– Keeps block access

• Host controller interfaces such as
– AHCI (HBA), SCSIe, or

– NVMe for PCI Express attached SSDs
• partitioning w/multiple name spaces,

• parallel IO, SG support,

• up to 64K I/O Command Queues,
64K command depth, Completion Queues…,

• interrupt mapping, interrupt coalescing, CQ polling, doorbell

• Will it be appropriate for next generation NVM technology?
– NAND → PCM: Write 500us → 1us, Read 25us → 50ns

– New architectures: Moneta-D, Gordon, NVHeap, FusionIO, …

SQ CQ SQ’s CQ

Core 0 Core n…

Controller

NVMe

04/15/13

Linux I/O-Stack

• File based I/O

• Centralized Block I/O Layer

• Page Cache for efficiency

• SSD mimics NVM as HDD
– least intrusive

– performance limitations

• Several new NVM drivers
– hook into BIO Layer

– thus give block access

– bypass legacy I/O
scheduling

– bypass SCSI layer

– no OS bypass on fast
path

– e.g.: NVMe, Fusion-IO,
Micron, …

04/15/13

Efficient NW and Novel I/O Stacks

RDMA
Network

Moneta-D Gordon NVHeap FusionIO

Efficient HW Access x x x x x

OS Bypass x x n/a n/a proprietary

Zero Copy x - n/a x -

Async. I/O x x x n/a x

Sync. Completion x - - n/a -

Rich I/O Semantics x - - transaction proprietary

04/15/13

Proposal: Unified I/O Stack

• Shortcut storage stack evolution: re-use NW stack

• User mapped I/O queues/channels

• Access abstraction: byte addressable access space

• I/O request opcodes: Read/Write/Send/Recv/Atomics

• Higher level storage systems as first level citizens

• File-systems, databases, object stores, …

• Translation of objects to I/O device address range

• File, database column, key/value item, …

• Enables direct data transfer between device and object

• Unified

• I/O semantics (work requests, event notification, polling, …)

• I/O memory management

• Device management, device capability discovery, …

04/15/13

Byte addressable Storage?

• Lowest level of access abstraction

• System I/O view: [PA, len]: NVM access above FTL

• Application view: [VA, len]: most concrete object representation

• [VA, len] to be mapped to

[key, offset, len] for access

• Advantages

• Efficient data I/O

• Direct object reference

• Higher levels of abstraction

if needed

• Examples:

• Byte addressable object store

• Traversing nodes of terabyte graph, random pointer chasing

• Terabyte Sorting

04/15/13

A Unified Stack

Unified IO Core

NVM driver

a

N-IF driver

a

N-IF driver

b

Local

NVM
NW Interfaces

ext3DB

Operating System

Application3

lib_ext3

Application2

lib_kv

Application1

lib_db
User-space

mapped I/O

channels

lib_ext3

04/15/13

What about OFED?

You guessed it

Unified IO ≥ OpenFabrics

OFED: An (almost) perfect software environment

to access high-performance storage

 Let the NVM device appear as an OFED RDMA verbs provider

 Communicate with a 'local storage peer'

 Plug and Play: RDMA Read/Write to 'local peer':

 Zero copy NVM access

 Byte addressable

 Application private Queue Pairs, asynchronous operations, ...

04/15/13

I/O

OS

Application

NVP: A Prototype Implementation

 Prototype

 PCI attached flash adapter

 'nvp' NVM OFED verbs provider with local peer

 NVP application operation:

 Open nvp OFED device, create PD

 Register local target buffers (ibv_reg_mr())

 Create QP and move it to RTS

 Post Receive's + Send's executing RPC to 'embedded

storage peer' (ESP) to learn partition parameters,

register I/O memory and associated RTag's

 Post READ/WRITE to read/write IO memory into/from

local registered buffer

 Mapped kernel QP/CQ, proprietary DB syscall

HAL

nvp

OFA Core

libnvp

libibverbs

ESP

registered buffer

device

management
Doorbell syscall,

mapped QP/CQ

0copy

I/O operation

HW control
PCI

Flash card

registered NVM

04/15/13

I/O

OS

Application

NVP: Very preliminary Results

HAL

nvp

OFA Core

libnvp

libibverbs

ESP

registered buffer

device

management
Doorbell syscall,

mapped QP/CQ

0copy

I/O operation

HW control
PCI

nvp block

driver

file buffer

Flash card

registered NVM

Linux FS

First simple tests:

 µ-bench: low-level access inside driver, full

page (8k) transfer, physical addressing (upper

bound of what's possible from host side of PCIe)

 FIO: single process, standard linux raw block

device, full page access

 NVP: single process, single QP, random read

test, full page access (* write measured in

different env. only)

Read
[MiB/s]

Write
[MiB/s]

Read
[kIOPS]

µ-bench 2450 (8k) 1820 (8k) 610

FIO 550 (4k)
1303 (8k)

181 (4k)
264 (8k)

140

NVP 2070 (4k)
2410 (8k)

n/a
*1450 (8k)

500

04/15/13

Further Thoughts

Unified IO = OpenFabrics + x

 Memory registration model

 Currently based on RPC mechanism carried in Send/Receive work requests

 other ideas include:

• mr = ibv_reg_mr(pd *, void *mem_id, length,

IBV_ACCESS_xxx|IBV_ACCESS_IOMEM)

 mem_id retrieved off-band from provider (via dedicated QP?)

 Overloads VA parameter, which would be NULL for IO memory

 Would also make send/receive RDMA model useable for data

(is that needed?)

 what else?

 All perfect?

04/15/13

Conclusion

• Storage stacks are on a familiar crossroad

– I/O device performance catches up with CPU speed

– That’s what happened to NW performance before

• Do not re-invent the performance wheel

• Reuse matured

– Network Stack abstractions,

– frameworks, and

– APIs

Integrate with OFED

Efficient HW

Access

Asynch. I/O

Thank You

#OFADevWorkshop

