
2013 OFA Developer
Workshop

Standardizing New NVM Software
Architectures and Architectures

Walt Hubis, Storage Standards Architect, Fusion-io

Evolution of Flash Adoption

April 28, 2013 SNIA NVM Summit 2

F L A S H + D I S K

Evolution of Flash Adoption

April 28, 2013 SNIA NVM Summit 3

F L A S H + D I S K

F L A S H A S D I S K

Evolution of Flash Adoption

April 28, 2013 SNIA NVM Summit 4

F L A S H A S
M E M O R Y

F L A S H + D I S K

F L A S H A S D I S K

Flash Architectures

April 28, 2013 SNIA NVM Summit 5

Balanced Performance Affects
Throughput

April 28, 2013 SNIA NVM Summit 6

Evolution of Flash Adoption

April 28, 2013 SNIA NVM Summit 7

Non-Volatile Memory Evolution
SSD Flash as

Block Drive
Flash as

Transparent Cache
Flash with

Direct Access I/O
Flash with

Memory Semantics

Ap
pl

ic
at

io
n

Application

Ap
pl

ic
at

io
n

Application Application Application Application

Open Source
Extensions Open Source Extensions

OS Block I/O OS Block I/O OS Block I/O

Direct-access I/O
API

Memory Semantics
API

Ho
st

Ho
st

File System File System File System
Native File

System
Services

Native File
System
Services

FTL

 Block Layer
Block Layer Block Layer

SAS/SATA

Network
FTL

Flash Translation Layer

Cache API
FTL FTL

Re
m

ot
e RAID Controller

FTL Flash Layer
Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

Non-Volatile Memory Evolution
SSD Flash as

Block Drive
Flash as

Transparent Cache
Flash with

Direct Access I/O
Flash with

Memory Semantics

Ap
pl

ic
at

io
n

Application

Ap
pl

ic
at

io
n

Application Application Application Application

Open Source
Extensions Open Source Extensions

OS Block I/O OS Block I/O OS Block I/O

Direct-access I/O
API

Memory Semantics
API

Ho
st

Ho
st

File System File System File System
Native File

System
Services

Native File
System
Services

FTL

 Block Layer
Block Layer Block Layer

SAS/SATA

Network
FTL

Flash Translation Layer

Cache API
FTL FTL

Re
m

ot
e RAID Controller

FTL Flash Layer
Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

Non-Volatile Memory Evolution
SSD Flash as

Block Drive
Flash as

Transparent Cache
Flash with

Direct Access I/O
Flash with

Memory Semantics

Ap
pl

ic
at

io
n

Application

Ap
pl

ic
at

io
n

Application Application Application Application

Open Source
Extensions Open Source Extensions

OS Block I/O OS Block I/O OS Block I/O

Direct-access I/O
API

Memory Semantics
API

Ho
st

Ho
st

File System File System File System
Native File

System
Services

Native File
System
Services

FTL

 Block Layer
Block Layer Block Layer

SAS/SATA

Network
FTL

Flash Translation Layer

Cache API
FTL FTL

Re
m

ot
e RAID Controller

FTL Flash Layer
Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

Non-Volatile Memory Evolution
SSD Flash as

Block Drive
Flash as

Transparent Cache
Flash with

Direct Access I/O
Flash with

Memory Semantics

Ap
pl

ic
at

io
n

Application

Ap
pl

ic
at

io
n

Application Application Application Application

Open Source
Extensions Open Source Extensions

OS Block I/O OS Block I/O OS Block I/O

Direct-access I/O
API

Memory Semantics
API

Ho
st

Ho
st

File System File System File System
Native File

System
Services

Native File
System
Services

FTL

 Block Layer
Block Layer Block Layer

SAS/SATA

Network
FTL

Flash Translation Layer

Cache API
FTL FTL

Re
m

ot
e RAID Controller

FTL Flash Layer
Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

Comparing I/O and Memory
Access Semantics

April 28, 2013 SNIA NVM Summit 12

I/O
I/O semantics examples:

• Open file descriptor – open(), read(), write(), seek(), close()
• (New) Write multiple data blocks atomically, nvm_vectored_write()
• (New) Open key-value store – nvm_kv_open(), kv_put(), kv_get(), kv_batch_*()

Memory
Access

(Volatile)

Volatile memory semantics example:
• Allocate virtual memory, e.g. malloc()
• memcpy/pointer dereference writes (or reads) to memory address
• (Improved) Page-faulting transparently loads data from NVM into memory

Memory
Access

(Non-Volatile)

Non-volatile memory semantics example:
• (New) Allocate and map Auto-Commit Memory™ (ACM) virtual memory pages
• memcpy/pointer dereference writes (or reads) to memory address
• (New) Call checkpoint() to create application-consistent ACM page snapshots
• (New) After system failure, remap ACM snapshot pages to recover memory state
• (New) De-stage completed ACM pages to NVM namespace
• (New) Remap and access ACM pages from NVM namespace at any time

New Primitives for a New Type of Media

April 28, 2013 SNIA NVM Summit 13

Open, read, write, rewind, close.

Open, read, write, seek, close.

Open, read, write, seek, close.

Open, read, write, seek, close.
Plus, new primitives to exploit characteristics of non-volatile memory

Basic write + atomic write, conditional write.
Basic write + TTL expiry for auto-deletion.
Basic mmap + crash-safety, versioning.

Tape

Disk

ioMemory
NVM

SSD

ATOMIC I/O Primitives:
Sample Uses and Benefits

April 28, 2013 SNIA NVM Summit 14

Databases
Transactional Atomicity:
Replace various workarounds
implemented in database code to
provide write atomicity (double-
buffered writes, etc.)

Filesystems
File Update Atomicity:
Replace various workarounds
implemented in filesystem code to
provide file/directory update atomicity
(journaling, etc.)

▸ 99% performance of raw writes
Smarter media now natively
understands atomic updates, with
no additional metadata overhead.

▸ 2x longer flash media life Atomic
Writes increase the life of flash
media up to 2x due to reduction in
write-ahead-logging and double-
write buffering.

▸ 50% less code in key modules
Atomic operations dramatically
reduce application logic, such as
journaling, built as work-arounds.

SNIA Non-Volatile Memory (NVM) Program
Problem Statement

• NVM features and performance are outgrowing the existing storage
model

• Sending block reads/writes down the traditional IO stack is
insufficient and becoming inefficient
– OK if NVM to be represented as a traditional disk
– Not OK for higher order NVM operations

• NVM technology is evolving less as storage, more as memory
– Need a programming model for storage memory usage

• Critical need to collaborate cross-industry to define and implement
this new programming model

• SNIA creates NVM Technical Working Group June 2012

SNIA NVM Programming TWG Formation

• Charter: Develop specifications for new software
programming models for use of NVM
– Scope:

• Programming models for applications and OS components
• Each model covers NVM extensions for block storage, file

access, and memory access models

• Operating System (OS) Specific APIs
– SNIA defines the programming model specification
– Each OS Vendor codes the programming models to

the specific OS
• Discussion with Linux community underway

NVM Accessed as Memory

• Samples of behavior to be covered in specification
– Discover available NVM devices
– Discover their characteristics and support for optional

features:
• Examples : Atomic operations, provisioning, etc…

– Assign a region of NVM to a process memory address
• Same region has to map the same way across reboots

– How to read/write to NVM
• How to commit changes to NVM
• Use of behavior to assure durability and consistency (flush, …)

NVM Programming Model Exclusions

• The programming model is tied to other kernel behavior
– Access control and ownership
– Device discovery and naming

• Frameworks related to storage
• Events
• SW install/upgrade
• Device management

• Vendor Unique Behaviors
– Flash maintenance and grooming
– Implementation of FTL and associated services
– Certain types of error conditions

TWG Status

• Weekly calls
– Tuesdays at 4:00PM Pacific

• Two Day Face to Face Meetings
– Quarterly at SNIA Symposia

• See me if you are interested in attending
• Current work

– Use Cases
– Actions
– Glossary

• Deliverable Schedule TBD

Open Interfaces and Open Source

April 28, 2013 SNIA NVM Summit 20

– Primitives: Open Interface

– API Libraries: Open Source, Open Interface

– INCITS SCSI (T10) active standards proposals:
• SBC-4 SPC-5 Atomic-Write

http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf

• SBC-4 SPC-5 Scattered writes, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf

• SBC-4 SPC-5 Gathered reads, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

– SNIA NVM-Programming TWG

http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

Thank You

#OFADevWorkshop

	2013 OFA Developer Workshop
	Evolution of Flash Adoption
	Evolution of Flash Adoption
	Evolution of Flash Adoption
	Flash Architectures
	Balanced Performance Affects Throughput
	Evolution of Flash Adoption
	Non-Volatile Memory Evolution
	Non-Volatile Memory Evolution
	Non-Volatile Memory Evolution
	Non-Volatile Memory Evolution
	Comparing I/O and Memory Access Semantics
	New Primitives for a New Type of Media
	ATOMIC I/O Primitives:�Sample Uses and Benefits
	SNIA Non-Volatile Memory (NVM) Program �Problem Statement
	SNIA NVM Programming TWG Formation
	NVM Accessed as Memory
	NVM Programming Model Exclusions
	TWG Status
	Open Interfaces and Open Source
	Thank You

