2013 OFA Developer Workshop

Network Direct v2 and WinOFED

Fab Tillier (ftillier@microsoft.com)
What is Network Direct?

• Microsoft defined interfaces for RDMA

• Transparent support of IB, iWARP, and RoCE

• IP-addressing based
Why Network Direct?

- Designed for Windows
- Higher level of abstraction
- Fabric agnostic
- Stable ABI
- No Callbacks
- Dynamic provider discovery
- Extensible
- Easier to understand
- Easier to develop for
Asynchronous Operations

• Win32 Overlapped operations used for:
 – Memory Registration
 – CQ Notification
 – Connection Management

• Client controls threading and completion mechanism
 – I/O Completion Port or GetOverlappedResult

• Simpler for kernel drivers to support
 – IoCompleteRequest – I/O manager handles the rest.
What’s New in NDv2?

- Support for 3rd party applications
 - NDv1 was designed exclusively for MSMPI
- Alignment with NDK
- Easier extensibility
- Object hierarchy improvement
- Memory Regions are 1st class objects
- Shared Receive Queues
- CQ/SRQ Event Affinity
- Standards alignment
Using Overlapped I/O

IND2Adapter::CreateOverlappedFile

- Returns file handle on which overlapped requests are performed
- Client can bind it to its own I/O completion port
- Client can control I/O behavior
 - SetFileCompletionNotificationModes
 - FILE_SKIP_COMPLETION_PORT_ON_SUCCESS is always set
 - BindIoCompletionCallback
- Multiple overlapped files for NUMA binding
Limitations of Network Direct

- RDMA Atomic support
- Unreliable Datagram support
- Multicast support
- Send and Invalidate
- Immediate Data
NDv2 Availability

- Headers published with HPC Pack 2012 SDK
- Supported by MSMPI v4 (HPC Pack 2012)
- Upcoming support:
 - WinOFED 3.2 (May 2013)
 - Mellanox 4.40 (2Q2013)
 - [This Space For Rent]
Case Study: uDAPL

- IBAL offers technical and business limitations
 - No ABI versioning mechanisms
 - Limited IHV support
- uDAPL ported to Network Direct v2 interfaces
 - Stan Smith (Intel) did all the heavy lifting
 - Portability between 3rd party provider
- Test case for NDv2 outside of MSMPI
- Test case for viability of WinOFED as ULP distro

- Running dapltest over ND worked out of the box
 - But who runs dapltest for their business?
Case Study: Intel MPI

- Intel MPI uses uDAPL to interface to RDMA networks
 - Currently supported configuration is uDAPL over IBAL
- Test case for portability of uDAPL clients
 - Intel MPI just worked, too!
- Results NOT endorsed by Intel
 - DAPL/ND not yet performance tuned
Intel MPI: Test Setup

- Windows Azure Big Compute servers
 - Dual SandyBridge
 - Lots of RAM
 - QDR IB
 - Windows Azure OS
- Intel MPI Library, Version 4.0 Update 3 Build 20110824
- Intel MPI Benchmark Suite V3.2.3, MPI-1 part
 - Pingpong
 - Bcast
 - Allreduce
 - Reduce
 - Alltoall
 - Barrier
Intel MPI: Test Environment

• Test environments
 – Two servers, one VM per server
 – Connected through IB switch
 – Windows Azure Host + IBAL
 – Windows Azure Host + NDv2
 – Windows Azure VM + NDv2
 – Single Run
 • no averaging or accounting for outliers
Pingpong

Network Direct v2 and WinOFED
Bcast

Performance Ratio

Latency vs Message Size

IBAL Latency
ND Latency
VM Latency

Network Direct v2 and WinOFED
Allreduce

Network Direct v2 and WinOFED
Reduce

Network Direct v2 and WinOFED
Alltoall

Network Direct v2 and WinOFED
Barrier

Network Direct v2 and WinOFED
Intel MPI: Summary

• ND performs competitively with IBAL
• No code changes required for running in Windows Azure Big Compute VMs

But…

• Needs further scale testing/tuning
• No support for UD 😞
WinOFED Value

• Instrumental in bringing RDMA support to Windows
• Key to prototyping efforts for Network Direct
• Benefits participating IHVs
• Proving ground for innovation
 – NDv1 provider published 2009
 – NDv2 provider published 2013
WinOFED Limitations

• Limited IHV support
 – Only Mellanox has participated in recent years

• Only IHVs can ship WHQL certified drivers
 – Effectively results in per-IHV (closed source) drivers
 – WinOFED participation not a WHQL requirement

• Spotty interoperability between WinOFED and IHV releases
WinOFED Future

- Declare mission accomplished?
- Find a way to engage more IHVs?
- Reduce the scope?
 - Build above well defined interfaces
 - Network Direct for Windows native code
 - Linux OFED for cross-OS portability
 - Multiple IHVs commit to support at the ABI level
 - Established forum for Microsoft participation
Call To Action

• Implement NDv2 in your Windows drivers
• Use NDv2 for your Windows RDMA apps
• Help build a richer ecosystem
 – Help redefine WinOFED
 – Broaden IHV participation
 – Take advantage of this inroad to Microsoft
Resources

- NDKPI Reference Documentation
- HPC Pack 2012 SDK
Thank You