
On Demand Paging for 
User-level Networking 
Liran Liss 
Mellanox Technologies 



Agenda 

• Memory registration 
• RDMA programming challenges 
• On Demand Paging (ODP) 
• Page pre-fetching 
• Initial testing 
• Future work 
• Conclusions 

 

© 2013 Mellanox Technologies 2 



Memory Registration 

• Apps register Memory 
Regions (MRs) for IO 
– Referenced memory 

must be part of process 
address space at 
registration time 

– Memory key returned to 
identify the MR 

• Registration operation 
– Pins down the MR 
– Hands off the virtual to 

physical mapping to HW 

© 2013 Mellanox Technologies 
3 

Application 
U

ser-space 
driver stack 

HW
 

MR 
SQ

 CQ
 

Key 

RQ
 

Kernel 
driver 
stack 



Memory Registration – 
continued 
• Fast path 

– Applications post IO 
operations directly to 
HCA 

– HCA accesses memory 
using the translations 
referenced by the 
memory key 

© 2013 Mellanox Technologies 
4 

Application 
U

ser-space 
driver stack 

HW
 

MR 
SQ

 CQ
 

RQ
 

Kernel 
driver 
stack 

Key 

Wow !!! 
But… 



Challenges 

• Size of registered memory must fit physical memory 
• Applications must have memory locking privileges 
• Continuously synchronizing the translation tables 

between the address space and the HCA is hard 
– Address space changes (malloc, mmap, stack) 
– NUMA migration 
– fork() 

• Registration is a costly operation 
– No locality of reference 

 

© 2013 Mellanox Technologies 5 



Achieving High Performance 

• Requires careful design 
• Dynamic registration 

– Naïve approach induces significant overheads 
– Pin-down cache logic is complex and not complete 

• Pinned bounce buffers 
– Application level memory management 
– Copying adds overhead 

© 2013 Mellanox Technologies 6 



On Demand Paging 

• MR pages are never pinned by the OS 
– Paged in when HCA needs them 
– Paged out when reclaimed by the OS 

• HCA translation tables may contain non-present 
pages 
– Initially, a new MR is created with non-present pages 
– Virtual memory mappings don’t necessarily exist 

 

© 2013 Mellanox Technologies 7 



Semantics 

• ODP memory registration 
– Specify IBV_ACCESS_ON_DEMAND access flag 

• Work request processing 
– WQEs in HW ownership must reference mapped memory 

• From Post_Send()/Recv() until PollCQ() 
– RDMA operations must target mapped memory 
– Access attempts to unmapped memory trigger an error 

• Transport 
– RC semantics unchanged 
– UD responder drops packets while page faults are resolved 

• Standard semantics cannot be achieved unless wire is back-
pressured 

© 2013 Mellanox Technologies 8 



Advantages 

• Simplified programming 
– MPI rendezvous without 

dynamic registrations 
– No dedicated buffer pools to 

manage 

• Practically unlimited 
memory registrations 
– No special privileges are 

required 

• Physical memory optimized 
to hold working set 

© 2013 Mellanox Technologies 9 

SendSomething() 
{ 
 char buf[SIZE]; 
 WQE wqe; 
 ... 
 FillBuf(buf); 
 wqe.sge[0].addr = buf; 
 wqe.sge[0].length = SIZE; 
 wqe.sge[0].lkey = STACK_KEY; 
 ... 
 Post_Send(wqe); 
 while (!PollCQ()); 
} 



Design 

• Kernel only 
– Transparent to applications 

• Generic code (ib_core) tasks 
– Manage page invalidations 

• Register for MMU notifier calls 
• Provide context for invalidations 
• Locate intersection between page invalidations and 

MRs 

– Support page faults 
• Synchronize between invalidations and page faults 
• Page-in user pages and map to dma 

© 2013 Mellanox Technologies 10 



Design – continued 

• Driver code (mlx4_core/ib) tasks 
– Process page faults 

• Catch and classify HW page faults 
• Provide context for page faults 

– Per-QP work_struct for requester/responder 

– Handle HW page invalidations 

© 2013 Mellanox Technologies 11 



Data Structures 

© 2013 Mellanox Technologies 12 

ib_core 

mlx4_core / mlx4_ib 

Key MR 
tree 

Per user 
virt_addrumem 

interval tree 

umem 
Page list 
DMA list 

mlx4_ib_mr 
Translation 

table QP 
Requestor ctx 
Responder ctx 

mmu_notifier 
handlers 

MR 

HCA 



Page-in Flow 

© 2013 Mellanox Technologies 13 

ib_core 

mlx4_core / mlx4_ib 

Key MR 
tree 

Per user 
virt_addrumem 

interval tree 

umem 
Page list 
DMA list 

mlx4_ib_mr 
Translation 

table QP 
Requestor ctx 
Responder ctx 

mmu_notifier 
handlers 

MR 

HCA 
1. Page 

fault event 

2. Look up 
MR 

3. Request 
pages 

4. Get pages 
+ map to 

DMA 

5. Update HW 
mappings 6. Resume 

QP 



Invalidation Flow 

© 2013 Mellanox Technologies 14 

ib_core 

mlx4_core / mlx4_ib 

Key MR 
tree 

Per user 
virt_addrumem 

interval tree 

umem 
Page list 
DMA list 

mlx4_ib_mr 
Translation 

table QP 
Requestor ctx 
Responder ctx 

mmu_notifier 
handlers 

MR 

HCA 

1. Page 
invalidation 

2. Look up 
intersecting 

MRs 
5. Acknowledge 

invalidation 

3. Request 
invalidation 

4. Flush 
HW caches 

6. Unmap DMA 
and return 



Page Pre-fetching 

• New Verb for pre-fetching pages 
• Uses 

– Warming up new memory mappings 
– MPI rendezvous optimization 
– UD responder optimization 

© 2013 Mellanox Technologies 15 



Initial Testing 

• ODP support 
– Implemented all RC transport flows for IB and RoCE 

• Excluding SRQ and memory windows 
– UD over IB and RoCE 
– Raw Ethernet QP 

• Inter-operability 
– Latency of non-ODP applications running concurrently hardly 

affected 
– Mixed requestors/responders also work well 

• Native performance for memory-resident ODP pages 
• Page-in performance 

– 4K page fault takes approximately 135us 
– 4M page fault takes approximately 1ms 

 
© 2013 Mellanox Technologies 16 



Execution Time Breakdown 
(Send Requestor) 

© 2013 Mellanox Technologies 17 

2% 

36% 

4% 
5% 16% 

37% 

0% 

Schedule in

WQE read

Get User Pages

PTE update

TLB flush

QP resume

Misc

0% 

7% 

83% 

1% 

2% 

7% 

0% 

Schedule in

WQE read

Get User Pages

PTE update

TBL flush

QP resume

Misc

4K Page fault (135us total time) 4M Page fault (1ms total time) 



Future work: 
Huge MR Support 
• Support MRs in the size of TBs 
• Implicit ODP 

– Register complete application address space up-front 
– Effectively eliminate memory registration 

• Meta-data size must be a function of currently 
mapped memory instead of MR size 
– Applies to all data structures (IB core, driver, and HW) 

• Memory Windows (MWs) become the main 
vehicle for controlling access rights 

© 2013 Mellanox Technologies 18 



Future Work: 
Improve OS integration 
• Update PTE accessed/dirty bits according to IO 

accesses 
• Page invalidation batching 

– Page eviction in the swapper 
– NUMA migration process 

• Extend ODP to guest physicalmachine 
translations for virtualization 
 
 
 
 
 

© 2013 Mellanox Technologies 19 



Conclusions 

• RDMA performance is great 
– But requires careful design 

• ODP simplifies RDMA programming and 
deployment 
– Moves memory management to the OS 
– Lifts memory-pinning limits 

• ODP does not sacrifice performance or 
interoperability 

• ODP eliminates memory registrations!!! 
– Coming up soon 

© 2013 Mellanox Technologies 20 



Thank You 

© 2013 Mellanox Technologies 



Backup 

© 2013 Mellanox Technologies 



Concurrent Page Faults 

• Each QP has at most 2 concurrent page faults 
– Requestor 
– Responder 

• Faulting QP temporarily suspended until fault is 
resolved by SW 
– Even if another QP satisfies the fault in the meantime 
– Required for correct completion semantics 

 

© 2013 Mellanox Technologies 23 



Page-in / Invalidation Races 

• Invalidations may race with page faults 
– HW will complete all in-flight memory accesses to an 

invalidated range before completing the invalidation 
– New accesses will trigger a page fault normally 

• Page-in requests are not serviced while handling 
mmu_notifier invalidations 
– QP is resumed without updating the page tables 
– HW will retry access optionally triggering another 

page fault 
– Simplifies the code considerably 

© 2013 Mellanox Technologies 24 



Forward Progress 

• Challenge 
– Single MTU-sized packet may refer to multiple S/G entries 

in WQEs 
– Single RDMA-W transaction may span multiple pages 

• Forward progress generally not guaranteed 
– Pages are not pinned  inherent race with page 

invalidation 
– Not any different than CPU accesses 

• Alleviate by paging-in multiple pages at once 
– Read multiple SGEs in WQE page faults 
– Pre-fetch large consecutive ranges in RDMA faults 

• Not an issue in practice 
 

© 2013 Mellanox Technologies 25 


	On Demand Paging for User-level Networking
	Agenda
	Memory Registration
	Memory Registration – continued
	Challenges
	Achieving High Performance
	On Demand Paging
	Semantics
	Advantages
	Design
	Design – continued
	Data Structures
	Page-in Flow
	Invalidation Flow
	Page Pre-fetching
	Initial Testing
	Execution Time Breakdown (Send Requestor)
	Future work:�Huge MR Support
	Future Work:�Improve OS integration
	Conclusions
	Thank You
	Backup
	Concurrent Page Faults
	Page-in / Invalidation Races
	Forward Progress

