INFINIBAND VIRTUALIZATION UPDATE

Liran Liss
IBTA MgtWG
[April 4th, 2016]
AGENDA

- Infiniband Virtualization goals
- Virtual HCAs and ports
- Packet relay
- Verbs
- Subnet management
- Subnet administration
- Performance management
- Software implications
INFINIBAND VIRTUALIZATION GOALS

- **Scalable**
 - Multiple virtual endpoints
 - Efficient use of fabric resources

- **Explicit**
 - Virtual endpoints are visible to subnet management

- **Simple**
 - Management
 - Implementation

- **Backward compatible**
 - Interoperable with legacy nodes
 - Interoperable with legacy SM
 - Fall back to non-virtualized mode
VIRTUAL HCAS AND PORTS

- **Virtual HCA**
 - Independent consumer interface
 - Resources
 - Namespace

- **Virtual Port**
 - Provides connectivity to a VHCA
 - Light-weight transport endpoint
 - Share physical link
VPORT PROPERTIES

- **Per VPort**
 - GID Table
 - P_Key Table
 - (Logical) PortState
 - Capability Mask
 - P_KeyViolations counter
 - Q_KeyViolations counter
 - LID (optional)
 - Profile
 - SL mask

- **Shared by physical port**
 - LID, LMC, SL2VL, VL arbitration, etc.
VPORT TYPES

- **VPort0**
 - Privileged, backward-compatible to non virtualization aware environments

- **Other VPorts**
 - Non-privileged

<table>
<thead>
<tr>
<th></th>
<th>VPort0</th>
<th>VPortN; N>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GID table</td>
<td>Mirrors physical port</td>
<td>Independent</td>
</tr>
<tr>
<td>P_Key table</td>
<td>Mirrors physical port</td>
<td>Independent</td>
</tr>
<tr>
<td>Capabilities</td>
<td>Mirrors physical port</td>
<td>Independent</td>
</tr>
<tr>
<td>SMP traffic</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Raw Ethertype traffic</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Raw IPv6 traffic</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GMP traffic</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
OVERALL PICTURE

Verbs

HCA

vHCA (NodeGUID0)
GS*
SMA
QP0 QP1
Port1 Port2

vHCA (NodeGUID1)
GS*
QP0 QP1
Port1 Port2

vHCA (NodeGUID2)
GS*
QP0 QP1
Port1 Port2

vHCA
(NodeGUID0)

QP0 QP1
QP0 QP1
QP0 QP1
Port1 Port2 Port1 Port2

VPort0 VPort1 VPortN VPort0 VPort1 VPortN

Physical Port1 Physical Port2
PACKET RELAY (SHARED LID)

- **Unicast**
 - Packets are relayed to VPorts according to their DGID
 - VPort0 receives default traffic
 - Packets whose DGID does not match any GID Table
 - Packets without a GRH

- **Multicast**
 - Delivered to any QP attached to the packet MGID

- **Loopback**
 - Within VPort if either
 - (DGID matches VPort.GIDTable) && (DLID == Port.LID)
 - Loopback indicator is set (either on QP or Address Handle)
 - Within physical port if
 - (DLID == Port.LID)

- **Extension to LID-assigned VPorts is straightforward**
VERBS

- **OpenHCA**
 - Returns a handle to a VHCA
 - Regardless of whether Virtualization was enabled by the SM

- **QueryHCA**
 - CA attributes pertain to VHCA resources
 - The following Port Attributes correspond to the associated VPort
 - PortState
 - P_Key and GID Tables
 - P_Key and Q_Key violation counters
 - CapabilityMask bits
 - GRH-required Indicator
VERBS

- **ModifyHCA**
 - The following Port Attributes correspond to the associated VPort
 - Optional shutdown port indicator
 - Q_Key Violation counter reset bit
 - CapabilityMask bits (IsSM applicable only to VPort0)
 - Optional InitType value (VPort0 only)

- **Asynchronous events**
 - Affiliated events and errors are delivered to the corresponding VHCA
 - Unaffiliated asynchronous events and errors
 - PortActive issued when VPort PortState transitions to Active
 - PortError issued when VPort PortState transitions from Active to another state
 - PortChange event issued when
 - VPort GID or P_Key tables change
 - Physical PortInfo fields change (e.g., MasterSM LID)
 - ClientReregistration issued when SM triggers it on either the VPort or physical port
Virtualization support
- Indicated by a PortInfo:CapabilityMask2 bit – IsVirtualizationSupported

VirtualizationInfo Attribute

<table>
<thead>
<tr>
<th>Component</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPortCap</td>
<td>RO</td>
<td>Maximum supported VPorts</td>
</tr>
<tr>
<td>VPortIndexTop</td>
<td>RO</td>
<td>Top index of enabled VPort</td>
</tr>
<tr>
<td>VirtualizationEnable</td>
<td>RW</td>
<td>Enable VPort traffic</td>
</tr>
<tr>
<td>VClientReregister</td>
<td>RW</td>
<td>Client reregister for all VPorts</td>
</tr>
<tr>
<td>VPortStateChange</td>
<td>RW</td>
<td>Set by SMA whenever any VPort transitions to/from the Down state</td>
</tr>
<tr>
<td>VirtualizationRevision</td>
<td>RO</td>
<td>Local SMA virtualization revision</td>
</tr>
<tr>
<td>CapabilityMask</td>
<td>RO</td>
<td>Optional virtualization capabilities</td>
</tr>
</tbody>
</table>
VPortInfo Attribute

<table>
<thead>
<tr>
<th>Component</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPortState</td>
<td>RW</td>
<td>(Logical) PortState</td>
</tr>
<tr>
<td>VPortClientReregister</td>
<td>RW</td>
<td>Per VPort ClientReregister bit</td>
</tr>
<tr>
<td>LIDRequired</td>
<td>RO</td>
<td>Assign a unique LID to this VPort</td>
</tr>
<tr>
<td>VGUIDCap</td>
<td>RO</td>
<td>Per VPort client reregister</td>
</tr>
<tr>
<td>VPortCapabilityMask</td>
<td>RO</td>
<td>Capabilities</td>
</tr>
<tr>
<td>P_KeyViolations</td>
<td>RW</td>
<td>Local SMA virtualization revision</td>
</tr>
<tr>
<td>Q_KeyViolations</td>
<td>RW</td>
<td>Optional virtualization caps</td>
</tr>
<tr>
<td>VPortLID</td>
<td>RW</td>
<td>LID for VPorts that require it</td>
</tr>
<tr>
<td>LIDByVPortIndex</td>
<td>RO</td>
<td>LID reference for VPorts without a LID</td>
</tr>
<tr>
<td>VPortProfileID</td>
<td>RO</td>
<td>Port profile</td>
</tr>
<tr>
<td>SLMask</td>
<td>RW</td>
<td>SL Mask</td>
</tr>
</tbody>
</table>

- Attribute modifier provides VPort index
VNodeInfo Attribute

<table>
<thead>
<tr>
<th>Component</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPartitionCap</td>
<td>RO</td>
<td>Number of partitions</td>
</tr>
<tr>
<td>VLocalPortNum</td>
<td>RO</td>
<td>Port that received this SMP</td>
</tr>
<tr>
<td>VNumPorts</td>
<td>RO</td>
<td>Number of VHCA ports</td>
</tr>
<tr>
<td>VSystemImageGUID</td>
<td>RO</td>
<td>System Image GUID</td>
</tr>
<tr>
<td>VNodeGUID</td>
<td>RO</td>
<td>Node GUID</td>
</tr>
<tr>
<td>VPortGUID</td>
<td>RO</td>
<td>Port GUID at index 0</td>
</tr>
</tbody>
</table>

- Attribute modifier provides VPort index
VNodeDescription Attribute
- Format identical to NodeDescription
- Attribute modifier provides VPort index

VPortGUIDInfo
- Format identical to GUIDInfo
- Attribute modifier provides VPort index and block number

VPortPartitionTable
- Format identical to P_KeyTable
- Attribute modifier provides VPort index and block number

VPortState Attribute

<table>
<thead>
<tr>
<th>Component</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPortStateBlock</td>
<td>RO</td>
<td>List of 128 VPortState elements</td>
</tr>
</tbody>
</table>

- Attribute modifier indicates block number
The following trap types are defined for VPorts:

<table>
<thead>
<tr>
<th>Trap</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1144</td>
<td>VPort Local Change</td>
<td>Informational</td>
</tr>
<tr>
<td>1146</td>
<td>VPort State Change</td>
<td>Urgent</td>
</tr>
<tr>
<td>1257</td>
<td>VPort P_Key Violation</td>
<td>Security</td>
</tr>
<tr>
<td>1258</td>
<td>VPort Q_Key Violation</td>
<td>Security</td>
</tr>
</tbody>
</table>

Traps 1144 and 1146 aggregate changes for all VPorts:
- SM must query the Port to detect which VPorts have changed their state.

Traps 1257 and 1258 are VPort specific:
- Notice DataDetails indicates VPort index.
• **VPorts access the SA via MADs with GRH**
 - DGID must be refer to well-known SA GUID

• **Partition checks apply to VPort P_Key tables**

• **VPort GIDs may be provided in the following Attributes**
 - InformInfoRecord
 - ServiceRecord
 - PathRecord
 - MCMemberRecord
 - MultiPathRecord
PERFORMANCE MANAGEMENT

- **Providers per VPort counters**
 - Similar to the PortCounterExtended Attribute

- **Counters**
 - PortXmitData
 - PortRcvData
 - PortXmitPkts
 - PortRcvPkts
 - PortUnicastXmitPkts
 - PortUnicastRcvPkts
 - PortMultiCastXmitPkts
 - PortMultiCastRcvPkts
 - PortRelayErrors
 - Accounts for SL Mask and GRH violations
SOFTWARE IMPLICATIONS

- **Applications**
 - Use GRH in Address Handle attributes

- **Host stack**
 - Extend kernel port information to indicate when a GRH required
 - Used by SA code
 - SRIOV management APIs
 - Control VHCA identify, port state, and other properties

- **OpenSM**
 - Discover and initialize VPorts
 - React to VPort state changes following traps

- **Management tools**
 - Discover and list VPorts
THANK YOU

Liran Liss

IBTA MgtWG