InfiniBand Topologies and Routing in the Real World

Susan Coulter, Jesse Martinez, Dominic Manno, Mike Mason, Brad Settlemyer

Los Alamos National Laboratory – LA-UR-16-21830

[April 8th, 2016]
Conclusions

The high speed network (HSN) internal to a compute cluster is a significant contributor to external file system performance and throughput.

- Interconnect technology is extremely complicated, with very few simple assumptions holding true in the real world.

- Testing and experience at scale is critical to understanding and verifying HSN performance.

- Avoid putting more than one IO node per leaf switch if at all possible
LANL had 2 distinct Lustre file systems deployed in the Turquoise Network, L1 and L2.

A third file system, L3, was being deployed.

All 3 of these file systems used the same IB backbone.

As part of the L3 deployment, bandwidth testing was being done from an existing compute cluster, Wolf, using a reservation of 64 contiguous compute nodes.

The bandwidth test results were ~19 GB/s, while the expected bandwidth was ~55 GB/s.

These results were consistent, regardless of the amount of the file system being targeted. (a few OSSs or the entire set of 40 OSSs)
Lustre Backbone / Wolf Compute Cluster connectivity

- L1 OSTs
- L1 OSSs
- L2 OSTs
- L2 OSSs
- L3 OSTs
- L3 OSSs

Lustre IB Backbone

Wolf IB Fabric

Wolf IO nodes (LNet routers)
Wolf IB fabric details

Intel True Scale 12800-360

- 36 line cards with 18 external ports and 18 internal ports each
 - 18 host ports
 - 18 spine-connected ports

- 18 spine cards with 36 ports each

- $36 \times 18 = 648$ possible internal spine ports for routes

- IB Routing is not symmetric, $(A \rightarrow B \neq B \rightarrow A)$

- Number of routes = $(\text{hosts}^2 - \text{hosts})$
 - Wolf has 408,960 routes

- OpenSM is the Subnet Manager
 - SM runs on wf-master
 - Fat Tree routing with Up/Down as secondary fall back
 - port_shifting set to TRUE
 - All 24 IO nodes plugged in to port 18 on 24 different line cards
The Problem in more detail

- As part of the trouble shooting, the existing L1 and L2 file systems were tested.
 - L1 and L2 test results showed possible degradation.
 - The degradation appeared to happen after the configurations for L3 were added to various systems in the Turquoise Network.
 - Typical performance for L2 was considered to be ~35-40 GB/s.
 - Regular and consistent bandwidth test results were not available for either L1 or L2.
 - Due to scheduling and end-of-year constraints, L3 was added to the production IB backbone before it was fully tested. This resulted in the lack of independent bandwidth data.
The focus shifted to testing L2, partly because of the possible degradation in the performance of a production file system, and partly because some amount of previous data existed to compare results to.

The first L2 tests were done using the same contiguous allocation used to test L3.

Subsequent tests were run at larger sizes to look for differences and/or patterns. These subsequent tests became spread across the cluster as larger allocations were dynamically created, which resulted in these larger tests running on non-contiguous allocations.

The contiguous allocations consistently performed at ~17 GB/s

The non-contiguous allocations consistently performed at ~35-40 GB/s

These results held true even when the number of nodes in both the contiguous and non-contiguous tests were equal.
The results for contiguous and non-contiguous compute nodes were consistently reproducible.

SM verified to be running Fat Tree during the tests (port_shifting and scatter_ports only applies to Up/Down routing engine)

Refined the granularity of one of our existing monitoring processes to capture throughput on the switch ports.

Monitored throughput via Splunk during testing.
IB throughput data from PerfManager / Splunk
Wolf IB Spine Switch Activity

Contiguous node allocation
- 63 nodes

Non-contiguous node allocation
- 96 nodes

~17 GB/s
~40 GB/s
IB throughput data further refined
Wolf IB Spine Port Route Distribution

Number of routes through each port

Contiguous
63 node allocation
1,121 routes

Non-contiguous
63 node allocation
1,456 routes

[port number]
Wolf: All Compute Nodes to All IO Nodes
Spine Route Distribution

Before Changes

Total Routes through the Spine: 28,612

Contiguous results
~17 GB/s

Non-Contiguous results
~35-40 GB/s
Wolf: All Compute Nodes to All IO Nodes
Spine Route Distribution

With the `io_guid_file`

Total Routes through the Spine: 28,612

Contiguous results
~40 GB/s

Non-Contiguous results
~45 GB/s

Spine Switches / 36 ports each - 444 out of 648 ports used
Wolf: All Compute Nodes to All IO Nodes
Spine Route Distribution

With IO nodes physically moved

Total Routes through the Spine: 28,614

Contiguous results
~55 GB/s

Non-Contiguous results
~55 GB/s

Spine Switches / 36 ports each - 637 out of 648 ports used
Entire Wolf Spine Route Distribution
All Compute / IO ↔ All Compute / IO

Before Changes

After IO nodes moved
Mustang: All Compute Nodes to All IO Nodes

Spine Route Distribution

Before Changes

Total Routes through the Spine: 57,076
Mustang: All Compute Nodes to All IO Nodes
Spine Route Distribution

With io_guid_file

Total Routes through the Spine: 58,200
Mustang: All Compute Nodes to All IO Nodes
Spine Route Distribution

With IO nodes physically moved

Total Routes through the Spine: 58,200

Spine Switches / 32 ports each - 1,359 out of 1,728 ports used
Luna: All Compute Nodes to All IO Nodes
Spine Route Distribution

Before Changes

Total Routes through the Spine: 146,252

54 Spine Switches / 36 ports each – 1299 out of 1945 ports used
Luna: All Compute Nodes to All IO Nodes
Spine Route Distribution

With io_guid_file

Total Routes through the Spine: 146,252

54 Spine Switches / 36 ports each - 1317 out of 1945 ports used
Luna: All Compute Nodes to All IO Nodes
Spine Route Distribution

With IO nodes physically moved

Total Routes through the Spine: 146,252

54 Spine Switches / 36 ports each - 1316 out of 1945 ports used
Luna: All Compute Nodes to All IO Nodes
Spine Route Distribution

With io_guid_file

With IO nodes physically moved

Luna Compute to IO Spine Port Distribution - 146,252 total routes

54 Spine Switches / 36 ports each - 1317 out of 1945 ports used
Ability to graph routes by job now available via a script
Conclusions

- The high speed network (HSN) internal to a compute cluster is a significant contributor to external file system performance and throughput.

- Interconnect technology is extremely complicated, with very few simple assumptions holding true in the real world.

- Testing and experience at scale is critical to understanding and verifying HSN performance.

- Avoid putting more than one IO node per leaf switch if at all possible