
12th ANNUAL WORKSHOP 2016

NEW FEATURES AND CAPABILITIES
OF PSM2

Ravi Murty

April 7th, 2016
Intel

OpenFabrics Alliance Workshop 2016

OUTLINE

2	

•  What is Performance Scaled Messaging (PSM)?
•  New Features in PSM2
•  Compatibility with PSM1
•  PSM Architecture
•  PSM and OFI
•  PSM Open Source Strategy

OpenFabrics Alliance Workshop 2016

INTEL® OMNI-PATH ARCHITECTURE

§  Host Strategy: Leverage OpenFabrics
Alliance* (OFA)
§  Host Strategy: Leverage OpenFabrics

Alliance* (OFA)
•  OpenFabrics Alliance compliant: Off-

the-shelf application compatibility
•  Provides an extensive set of mature

upper layer protocols
•  Integrates 4th generation proven,

scalable PSM capability for HPC

•  OpenFabrics Interface (OFI) API
aligned with application requirements
§  Access: Open Source Key Elements •  Intel® Omni-Path FastFabric Tools,

•  Host software stack via OFA Fabric Manager, and GUI

•  Intel® Omni-Path FastFabric Tools, §  Channels: Integrate into Linux*
Fabric Manager, and GUI
§  Channels: Integrate into Linux*

Distributions
•  Intel® Omni-Path Architecture support

included in standard distributions

3	

OPTIMIZED HOST IMPLEMENTATION

OpenFabrics Alliance Workshop 2016

PSM – A QUICK OVERVIEW

4	

OpenFabrics Alliance Workshop 2016

WHAT IS PSM?

•  A scalable messaging library for large clusters and millions of ranks
•  PSM is carefully designed to match the semantics needed by compute

middlewares such as MPI
•  End-point communication model

•  Manage flow state for reliability with support for dynamic addition of end-points
•  Matched Queue (MQ) component

•  Semantically matched to the needs of MPI using tag matching
•  Provides calls for communication progress guarantees
•  MQ completion semantics (standard vs. synchronized)

•  Data transfer strategies optimized for latency and bandwidth
•  Adaptively takes advantage of on-load and off-load mechanisms in HFI,

transparent to library user
•  Optimized inter and intra node communications encapsulated in the API
•  Error handling scheme

•  Per Endpoint and Global error handler and user-defined error handlers.
 5	

OpenFabrics Alliance Workshop 2016

PSM API

•  Global tag matching API with 64-bit tags
•  Scale up to 64K processes per job
•  MQ APIs provide point-to-point message passing between endpoints

•  e.g. psm_mq_send, psm_mq_irecv
•  No “recvfrom” functionality – needed by some applications

6	

OpenFabrics Alliance Workshop 2016

PSM2 API

•  4th generation mature API with forward compatible extensions to existing
PSM API

•  Tag matching improvement
•  Increased tag size to 96 bits
•  Fundamentally ((stag ^ rtag) & rtagsel) == 0
•  Supports wildcards such as MPI_ANY_SOURCE or MPI_ANY_TAG using zero

bits in rtagsel
•  Allows for practically unlimited scalability

•  Up to 64M processes per job
•  Added “recvfrom” API

•  Allows caller to specify the source from which to receive message
•  e.g. difference between •  4th generation mature API with forward compatible extensions to existing PSM API

•  Tag matching improvement
•  Increased tag size to 96 bits

• 
7	

OpenFabrics Alliance Workshop 2016

PSM2 TAG MATCHING

#define PSM_MQ_TAG_ELEMENTS 3
typedef struct psm2_mq_tag {
 union {
 uint32_t tag[PSM_MQ_TAG_ELEMENTS] __attribute__((aligned(16)));
 struct {
 uint32_t tag0;
 uint32_t tag1;
 uint32_t tag2;
 };
 };
} psm2_mq_tag_t;

8	

•  Application fills ‘tag’ array or ‘tag0/tag1/tag2’ and passes to PSM
•  Both tag and tag mask use the same 96 bit tag type

OpenFabrics Alliance Workshop 2016

PSM2 SEND SIDE FUNCTIONS

psm_error_t
psm2_mq_isend2(psm2_mq_t mq, psm2_epaddr_t dest,

 uint32_t flags, psm2_mq_tag_t *stag,
 const void *buf, uint32_t len, void *context,
 psm2_mq_req_t *req);

psm_error_t
psm2_mq_send2(psm2_mq_t mq, psm2_epaddr_t dest,

 uint32_t flags, psm2_mq_tag_t *stag,
 const void *buf, uint32_t len);

9	

•  Non-blocking and blocking send PSM API extended to support 96-bit tag

OpenFabrics Alliance Workshop 2016

PSM2 RECEIVE SIDE STATUS

typedef struct psm2_mq_status2 {
 psm2_epaddr_t msg_peer;
 psm2_mq_tag_t msg_tag;
 uint32_t msg_length;
 uint32_t nbytes;
 psm_error_t error_code;
 void *context;
} psm2_mq_status2_t;

10	

•  psm2_mq_status2_t is derived from psm2_mq_status_t
•  msg_tag field changed from 64-bits to the new 96-bit tag

•  Additionally, a new field msg_peer added
•  Provide the source of the message
•  Eliminates application burden to maintain relationship between message and

source of message

OpenFabrics Alliance Workshop 2016

PSM2 RECEIVE SIDE FUNCTIONS

psm_error_t
psm2_mq_irecv2(psm2_mq_t mq, psm2_epaddr_t src, psm2_mq_tag_t *rtag,

 psm2_mq_tag_t *rtagsel, uint32_t flags, void *buf, uint32_t len,
 void *context, psm2_mq_req_t *req);

psm2_error_iprobe2
psm_mq_iprobe2(psm2_mq_t mq, psm2_epaddr_t src, psm2_mq_tag_t *rtag,

 psm2_mq_tag_t *rtagsel, psm2_mq_status2_t *status);

psm2_error_t
psm_mq_improbe2(psm2_mq_t mq, psm2_epaddr_t src, psm2_mq_tag_t *rtag,

 psm2_mq_tag_t *rtagsel, psm_mq_req_t *req, psm2_mq_status2_t *status);

11	

•  Functions psm2_mq_irecv2 and psm2_mq_iprobe2
•  Tag and tag mask are 96-bit wide. Also src argument allows receiver to specify

the source from which to receive the message
•  psm2_mq_improbe2 is a new function for MPI3 support

OpenFabrics Alliance Workshop 2016

PSM2 PROGRESSION API

psm_error_t psm2_mq_ipeek2(psm2_mq_t mq, psm_mq_req_t *req,
psm2_mq_status2_t *status);

psm_error_t psm2_mq_wait2(psm2_mq_req_t *request, psm2_mq_status2_t
*status);

psm_error_t psm2_mq_test2(psm2_mq_req_t *request, psm2_mq_status2_t
*status);

12	

•  Change in status argument from previous PSM API

OpenFabrics Alliance Workshop 2016

PSM1/PSM2
FORWARD COMPATIBILITY

AND CO-EXISTENCE

13	

OpenFabrics Alliance Workshop 2016

PSM1/PSM2 FORWARD COMPATIBILITY

•  Both PSM and PSM2 are supported on Intel®
OPA

•  On Intel® OPA PSM1 64-bit tag is zero-
extended to 96-bits

•  A PSM function only returns the first 64 bits of
tag

•  A PSM2 function returns all 96 bits of tag
•  For a PSM2 receive function, if ‘src’ argument

is NULL, PSM uses only the 96b tag to match
a message from any source

•  status2 will always return the message source
epaddr ‘msg_src’, independent of the ‘src’
argument in receiving function

14	

No software application changes

OpenFabrics Alliance Workshop 2016

PSM1/PSM2 CO-EXISTENCE

•  Co-existence between Intel® True Scale and Intel® Omni-Path Architecture

•  PSM2 renamed the symbol names but …
•  Forward compatibility is provided by psm2-compat RPM:

•  Provides binary compatibility for PSM1 based
•  Set LD_LIBRARY_PATH=/usr/lib64/psm2-compat/ prior to application launch.
•  /usr/lib64/psm2-compat/libpsm_infinipath.so.1, is a very thin wrapper

exporting PSM APIs, but uses PSM2 library. Minimal performance impact
from native PSM2

15	

OpenFabrics Alliance Workshop 2016

PSM2 OPTIMIZED ON
INTEL® OMNI-PATH ARCHITECTURE

16	

OpenFabrics Alliance Workshop 2016

INTEL® OPA: SEND OPTIONS

§  Send DMA (SDMA)
•  Optimizes Bandwidth for

Large messages
•  16 SDMA Engines for

CPU Offload
§  Programmed I/O (PIO)

•  Optimizes Latency and
Message Rate for small
messages

17	

CPU	

HFI	

TXE	

16	

SDMA	

Engines	

AutomaCc	

Header	

GeneraCon	

Processor	
 Host	
 Memory	
 Adapter	

ApplicaCon	

Memory	

PIO	

	
 	
 	
 PIO	

2	
 Modes	
 of	
 Sending	
 data	

Independent	
 of	
 Receive	
 mode	

Direct	
 Data	

Transfer	
 	
 	
 	
 Send	
 DMA	

OpenFabrics Alliance Workshop 2016

INTEL® OPA: RECEIVE OPTIONS

§  Eager-Receive
•  Received data buffers

copied to Application
Buffer

•  No handshake needed

§  Direct Data placement in
Application Buffer
•  Data placed directly into

Application Memory CPU	

HFI	

RXE	

Header	

Suppress	

Adapter	
 Processor	
 Host	
 Memory	

ApplicaCon	
 	
 RX	

Buffer	

Receive	
 Buffers	

Eager	
 	

Direct	
 Data	
 Placement	

2	
 Modes	
 of	
 Receiving	
 data	

Independent	
 of	
 Send	
 mode	

OpenFabrics Alliance Workshop 2016

INTEL® OPA PROVIDES EFFICIENT DATA
TRANSFER MECHANISMS

•  Most efficient data movement method automatically chosen based
on message size

19	

Message	
 Size	
 Send	
 Side	
 Receive	
 Side	

Up	
 to	
 8KB	
 PIO	
 Send	
 Eager	
 Receive	

>	
 8KB	
 and	
 <	
 64KB	
 SDMA	
 Eager	
 Receive	

64KB	
 or	
 more	
 	
 SDMA	
 Expected	
 Receive	

OpenFabrics Alliance Workshop 2016

MPI PERFORMANCE ON INTEL® OPA

20	

MPI	
 Latency1	
 MPI	
 Bandwidth2	
 MPI	
 Message	
 Rate3	

20%

faster
3.6x

 HIGHER
is Better

 HIGHER
is Better LOWER

is Better

3.0x

*non-­‐coalesced	

Tests	
 performed	
 on	
 Intel®	
 Xeon®	
 Processor	
 E5-­‐2697v3	
 dual-­‐socket	
 servers	
 with	
 2133	
 MHz	
 DDR4	
 memory.	
 Turbo	
 mode	
 enabled	
 and	
 hyper-­‐threading	
 disabled.	
 Ohio	
 State	
 Micro	
 Benchmarks	
 v.	
 4.4.1.	
 Intel	
 OPA:	

Open	
 MPI	
 1.10.0	
 with	
 PSM2.	
 	
 Intel	
 CorporaCon	
 Device	
 24f0	
 –	
 Series	
 100	
 HFI	
 ASIC.	
 OPA	
 Switch:	
 Series	
 100	
 Edge	
 Switch	
 –	
 48	
 port.	
 IOU	
 Non-­‐posted	
 Prefetch	
 disabled	
 in	
 BIOS.	
 Intel®	
 True	
 Scale:	
 Open	
 MPI.	
 	
 QLG-­‐
QLE-­‐7342(A),	
 288	
 port	
 True	
 Scale	
 switch.	
 1.	
 osu_latency	
 8	
 B	
 message.	
 2.	
 osu_bw	
 1	
 MB	
 message.	
 	
 3.	
 osu_mbw_mr,	
 8	
 B	
 message	
 (uni-­‐direcConal),	
 28	
 MPI	
 rank	
 pairs	

	

OpenFabrics Alliance Workshop 2016

PSM AND OFI

21	

OpenFabrics Alliance Workshop 2016

PSM PROVIDERS FOR OFI

•  In addition to a standalone library, OFI supports providers for both
versions of PSM

•  OFI provider for PSM and PSM2: https://github.com/ofiwg/libfabric
•  The psm provider runs over PSM1.x interface supported by Intel® True Scale
•  The psm2 provider runs over PSM2.x interface supported by Intel® OPA
•  The psm2 provider supports a richer set of capabilities due to the additional

functionality provided by the PSM2 library described earlier.
•  The PSM2 provider allows creation of multiple OFI endpoints without

limitations
•  PSM provider has limitations on endpoint capability settings when multiple

endpoints are opened.
•  The fi_psm and fi_psm2 man pages provide additional information

including capabilities supported by these providers
•  https://github.com/ofiwg/libfabric/wiki/Provider-Feature-Matrix-v1.3.0

•  Status: Both providers are in stable state. On-going work will be mainly
bug fixes/code refactoring

22	

OpenFabrics Alliance Workshop 2016

PSM IS OPEN SOURCE

§  PSM1 has been part of OFED for a very long time.
•  PSM2 is still in the works

§  PSM2 sources: https://github.com/01org/opa-psm2
§  Distros: PSM2 is accepted to go into RHEL 7.2 and SLES SP2
§  Documentation: Additional details on PSM2 and its API are available:

http://www.intel.com/content/dam/support/us/en/documents/network/
omni-adptr/sb/Intel_PSM2_PG_H76473_v1_0.pdf

23	

OpenFabrics Alliance Workshop 2016

CONCLUSIONS

§  PSM2 is an optimized user-space library designed to meet the
requirements of MPI

§ MQ component of PSM2 supports tag matching with 96-bit tags
and “recvfrom” functionality, among other improvements

§  Existing applications written to the PSM1 API should run on Intel®
OPA via the compat library

§  PSM support two send mechanism and two receive mechanisms
that allow for very efficient messaging from a latency and BW
perspective.

§ OFI has providers for PSM1 and PSM2
§  Finally, PSM2 is open source

OpenFabrics Alliance Workshop 2016

LEGAL DISCLAIMERS

25	

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.
Any forecasts of goods and services needed for Intel’s operations are provided for discussion purposes only. Intel will have no
liability to make any purchase in connection with forecasts published in this document.
Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances
and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or
cost reduction.
Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you
for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your
system manufacturer or retailer or learn more at intel.com.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,
not across different processor families: Go to: Learn About Intel® Processor Numbers
The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by
calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm
Intel, Intel Xeon, Intel Xeon Phi™ are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries.
Copyright © 2016, Intel Corporation

OpenFabrics Alliance Workshop 2016

OPTIMIZATION NOTICE

26	

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

12th ANNUAL WORKSHOP 2016

THANK YOU
Ravi Murty

 Intel

