EVOLUTION OF PCI EXPRESS® AS THE UBIQUITOUS I/O INTERCONNECT TECHNOLOGY

Debendra Das Sharma, PhD
Senior Principal Engineer and Director I/O Technology and Standards
Data Center Group, Intel Corporation
Chair, PHY Logical Group, PCI-SIG®

April 7, 2016
AGENDA

- Introduction
- PCI Express® (PCIe®) 4.0 Specification
- Retimers for Extending Channel Reach
- Form Factors
- Compliance
- Conclusions
Peripheral Component Interconnect (PCI) started as bus-based PC interconnect in 1992
- 32 bit @ 33 MHz
- Evolved to 64 bits @ 33/66/132 MHz

Moved to link-based serial interconnect with full-duplex differential signaling with PCI Express® (PCIe®) with backwards compatibility for software
- Doubling data rate every generation

Evolution from PC to HPC, servers, clients, handheld, and Internet-Of-Things usage over three decades
EVOLUTION OF PCI TECHNOLOGY

PCI/PCI-X SYSTEM

CPU

AGP GFX

Host Bridge

Memory

PCI Bridge

PCI Bridge

PCI-X Bridge

PCI-X Bridge

PCI-X Device

PCI-X Device

PCI

PCI EXPRESS® BASED SYSTEMS

CPU

Switch

PCI Express

GFX

Root Complex

Memory

Network

Storage

End Point

Legacy End Point

PCI

SoC

CPU Core(s)

PCI integrated
GFX

SoC Interconnect & Root Complex

Memory

PCI Express

GFX

PCIe integrated
GFX

PCIe port(s) for Wi-Fi, modem, storage, etc.

Connectivity Port(s) (Enet/...)

Highly integrated systems including hand-held devices

Large system with lots of open PCIe® slots – e.g., servers, workstations

Copyright © 2016 PCI-SIG® - All Rights Reserved
PCI EXPRESS® ROADMAP AND PLATFORM EVOLUTION

(Platform evolution in keeping with Moore’s Law: More PCIe® lanes along with speed increases culminating in PCIe being integrated into CPU socket starting PCIe 3.0)
PCI EXPRESS®: A LAYERED ARCHITECTURE

- PCI compatibility, configuration, driver model
- PCI Express enhanced configuration model

- Split-transaction, packet-based protocol
- Credit-based flow control, virtual channels

- Logical connection between devices
- Reliable data transport services (CRC, Retry, Ack/Nak)

- Physical information exchange
- Interface initialization and maintenance

- Market segment specific form factors
- Evolutionary and revolutionary

PCI Express Layering - Enabler for Modularity and Reuse
PCI EXPRESS®: A LOW-POWER INTERCONNECT

<table>
<thead>
<tr>
<th>Item</th>
<th>PCIe® 3.0</th>
<th>PCIe® 2.0</th>
<th>M-PHY Gear 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Speed [Gbps]</td>
<td>8</td>
<td>5</td>
<td>5.83</td>
</tr>
<tr>
<td>PHY Overhead</td>
<td>128/130, 1[GB/s]</td>
<td>8/10, 500[MB/s]</td>
<td>8/10, 583[MB/s]</td>
</tr>
<tr>
<td>Active Power [mW]</td>
<td>60 (L0)</td>
<td>46 (L0)</td>
<td>58 (HS)</td>
</tr>
<tr>
<td>Standby Power [mW]</td>
<td>0.11 (L1.2)</td>
<td>0.11 (L1.2)</td>
<td>0.2 (Hibern8)</td>
</tr>
<tr>
<td>MB/mJ (higher = better)</td>
<td>14-18</td>
<td>8-12</td>
<td>8-12</td>
</tr>
</tbody>
</table>

Source: IDF Sept'15

Synopsys* Published Power Data
- 5 mW/Gb/Lane – Active
- 10 uW/Lane – Standby
AGENDA

- Introduction
- PCI Express® (PCIe®) 4.0 Specification
- Retimers for Extending Channel Reach
- Form Factors
- Compliance
- Conclusions
PCI EXPRESS® 4.0 SPEED AND CHANNEL

- PCIe® 4.0 data rate: 16.0 GT/s
- Fully backwards compatible with PCIe 3.x (8.0 GT/s), PCIe 2.x (5.0 GT/s) and PCIe 1.x (2.5 GT/s); Preserves decades of ecosystem investment and innovation
- Low cost, high performance, low power I/O technology
- Connector improvements to reduce cross-talk and improve insertion loss at 8G Nyquist
- 2 connector 20” server PCIe topology needs either retimer or ultra low-loss PCB to operate at 16.0 GT/s
TRANSMITTER EQUALIZATION

- 2.5 GT/s and 5.0 GT/s: Fixed de-emphasis for Link
- 8.0 GT/s and 16.0 GT/s: Analysis demonstrates need for per Tx-Rx EQ
 - Variations in receiver design, channel, PVT
 - Adjust each Tx by its Rx individually
 - Start with a preset value and then adjust dynamically

- 4 Stages:
 - Stage 0: Preset values communicated at a lower data rate to downstream component
 - Stage 1: Link tries to stabilize at the preset at 1E-4 BER
 - Stages 2 and 3: Each receiver asks its transmitter to adjust till it achieves 1E-12 or better BER

Co-efficient based Tx EQ provides better margin

Results from an 18" 2C channel at 8.0 GT/s
Stage 2: Intended for Upstream Port to achieve BER $\leq 10^{-12}$. Starts at the preset. Coefficients/presets are exchanged in sub-loops until this is accomplished within 24 ms. A port may decide not to make any new requests. Corresponds to Phase 2.

- **Example:** start from preset 7 (coef=4/6)

1st sub-loop

a. EP Rx eval reveals need for less post, more pre
b. EP sends (5/5) to RC
c. RC applies (5/5) to TX
d. RC echo's (5/5) to EP

2nd sub-loop

a. EP Rx eval needs more pre, post ok
b. d. repeat with (6/5)

3rd sub-loop finds good result with (7/4) so moves to phase 3

Stage 3/Phase 3 is same as phase 2 in opposite direction
Downstream Port may skip Phase 2/3 if presets are good enough for the Link

Receiver full swing (FS) defines granularity of coeff

- Table at bottom-right is for illustrative purposes
- X-axis is pre-cursor, y-axis post-cursor, diagonal defines the boostline
- Each tile represents a coeff (e.g. p7=4/6, p8=5/5, etc)
- Numbers in tiles represent presets; black tiles are illegal coeff space
AGENDA

- Introduction
- PCI Express® (PCIe®) 4.0 Specification
- Retimers for Extending Channel Reach
- Form Factors
- Compliance
- Conclusions
Channel dxtension devices
- Part of PCIe® base spec (3.1+)
- Up to two retimers
- Critical for longer server channels in PCIe 4.0 architecture
- Has the electrical and PHY Logical – no link/transaction layer, no config registers, no in-band access by S/W
- Actively participates in link training, power management, ppm difference adjustment, link equalization
- Electrically separate links on either end of retimer
AGENDA

- Introduction
- PCI Express® (PCle®) 4.0 Specification
- Retimers for Extending Channel Reach
- Form Factors
- Compliance
- Conclusions
NVM EXPRESS™ DRIVING PCI EXPRESS® SSDs IN THE DATA CENTER

Data Center SSD Units by Interface

Data Center SSD total GB by Interface

Source: Forward Insights Q1'15
DATA CENTER FORM FACTORS FOR PCI EXPRESS®

BGA

16x20 mm ideal for small and thin platforms

M.2

42, 80, and 110mm lengths, smallest footprint of PCI Express® (PCIe®) connector form factors, use for boot or for max storage density

U.2 2.5in (aka SFF-8639)

2.5in makes up the majority of SSDs sold today because of ease of deployment, hotplug, serviceability, and small form factor Single-Port x4 or Dual-Port x2

CEM Add-in-card

Add-in-card (AIC) has maximum system compatibility with existing servers and most reliable compliance program. Higher power envelope, and options for height and length

Source: Intel Corporation
INEXPENSIVE CABLING = INDEPENDENT CLOCK + SPREAD SPECTRUM (SSC) (SRIS)

- **Challenge**: PCI Express® (PCIe®) specification did not support independent clock with SSC
 - SATA* cable ~ $0.50
 - PCIe cables include reference clock > $1 for equivalent cable

- **PCIe base specification 3.0 ECNs approved**
 1) Requires use of larger elasticity buffer
 2) Requires more frequent insertion of SKIP ordered set
 3) Requires receiver changes (CDR)
 4) Second ECN updates Model CDRs

- **SRIS will create a number of new form factor opportunities for PCIe**
 - OCuLink*
 - Lower cost external/internal cabled PCIe
 - Next generation of PCI-SIG® cable specification

Separate Refclk Modes of Operation: 5600ppm (New - SRIS) and 600ppm (Existing - SRNS)
AGENDA

- Introduction
- PCI Express® (PCIe®) 4.0 Specification
- Retimers for Extending Channel Reach
- Form Factors
- Compliance
- Conclusions
PCI EXPRESS® COMPLIANCE PROCESS

PCI-SIG® Specs

C&I Test Spec

Test Tools and Procedures

Clear Test Output Maps

• Directly to Test Spec

C&I Test Specs

Define

Test criteria based on spec requirements

• Test Definitions
• Pass/Fail Criteria

Test H/W & S/W

Validates

Test criteria

• Compliance
• Interoperability

Predictable path to design compliance

Copyright © 2016 PCI-SIG® - All Rights Reserved
AGENDA

- Introduction
- PCI Express® (PCIe®) 4.0 Specification
- Retimers for Extending Channel Reach
- Form Factors
- Compliance
- Conclusions
CONCLUSIONS

- Single PHY standard covering applications and form factors from handheld to data center
- Predominant direct I/O interconnect from CPU with high bandwidth
- Active development to extend PHY rate to 16 GT/s
- A variety of standard form factors covering applications from small/light mobile to the data center
- A robust and mature compliance and interoperability program
- Low-power
- High-performance
THANK YOU

Debendra Das Sharma, PhD
Senior Principal Engineer and Director I/O Technology and Standards
Data Center Group, Intel Corporation
Chair, PHY Logical Group, PCI-SIG®