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PROBLEM STATEMENT 

§ Provide applications with remote access to 
Non-Volatile/Persistent Memory storage at ultra-
low latency 

§ Examine storage protocol and RDMA protocol 
extensions in support of applications’ workload 

§ Explore implications on RDMA implementations 
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RDMA-AWARE STORAGE PROTOCOLS 

§  Ecosystem – Enterprise / Private Cloud-capable storage 
protocols 
•  Scalable, manageable, broadly deployed 
•  Provide authentication, security (integrity AND privacy) 
•  Natively support parallel and highly available operation 

§  SMB3 with SMB Direct 
§  NFS/RDMA 
§  iSER 
§ Others exist 
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STORAGE LATENCIES DECREASING 

§ Write latencies of storage 
protocols (e.g. SMB3) today 
down to 30-50us on RDMA 
•  Good match to HDD/SSD 
•  Stretch match to NVMe 
•  PM, not so much J 

§  Storage workloads are 
traditionally highly parallel 
•  Latencies are mitigated 

§  But workloads are changing:  
• Write replication adds a latency hop 
• Write latency critical to reduce 

Technology	   Latency	  
(high)	  

Latency	  
(low)	  

IOPS	  

HDD	   10	  msec	   1	  msec	   100	  

SSD	   1	  msec	   100	  µsec	   100K	  

NVMe	   100	  µsec	   10	  µsec	  (or	  
be6er)	  

500K+	  

PM	   <	  1	  µsec	   (~	  memory	  
speed)	  

BW/size	  
(>>1M/DIMM)	  

Orders of magnitude decreasing 
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WRITES, REPLICATION, NETWORK 

§ Writes (with possible erasure 
coding) greatly multiplies 
network I/O demand 
•  Small, random 

•  Virtualization, Enterprise applications 
•  MUST be replicated and durable 

•  A single write creates multiple network 
writes 

•  And possible later erasure coding 
•  The “2-hop” issue 

§  All such copies must be made 
durable before responding 
•  Therefore, latency of writes is critical! 

… 

Write 
Commit 

Erasure Code 

§  Reads 
  Small, random are latency sensitive 
  Large, more forgiving 

  But recovery/rebuild are interesting/important 5	  
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APIS AND LATENCY 

§  APIs also shift the latency requirement 
§  Traditional Block and File are often parallel 
§ Memory Mapped and PM-Aware APIs not so parallel 

•  Effectively a Load/Store expectation, nonblocking 
•  Memory latency, with possibly expensive Commit 
•  Local caches can improve Read (load) but not Write (store/remotely durable) 
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MANY LAYERS ARE INVOLVED 

§  Storage layers 
•  SMB3 and SMB Direct 
•  NFS, pNFS and NFS/RDMA 
•  iSCSI and iSER 

§  RDMA Layers 
•  iWARP 
•  RoCE, RoCEv2 
•  InfiniBand 

§  I/O Busses 
•  Storage (Filesystem, Block e.g. SCSI, SATA, SAS, …) 
•  PCIe 
•  Memory 
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RDMA TRANSFERS – STORAGE PROTOCOLS 
TODAY 

§  Direct placement model 
(simplified and optimized) 
•  Client advertises RDMA region in 

scatter/gather list 
•  Server performs all RDMA 

•  More secure: client does not 
access server’s memory 

•  More scalable: server does not 
preallocate to client 

•  Faster: for parallel (typical) 
storage workloads 

•  SMB3 uses for READ and WRITE 
•  Server ensures durability 
•  NFS/RDMA, iSER similar 

§  Interrupts and CPU on both 
sides 

RDMA	  Read	  (with	  local	  invalidate)	  

Send	  (with	  invalidate)	  

Send	  

DATA	  

RDMA	  Write	  
DATA	  

Send	  (with	  invalidate)	  

Send	  

READ	  

WRITE	  

Client Server 

Register	  

(Register)	  

Register	  
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LATENCIES 

§  Undesirable latency contributions 
•  Interrupts, work requests 

•  Server request processing 
•  Server-side RDMA handling 

•  CPU processing time 
•  Request processing 

•  I/O stack processing and buffer management 
•  To “traditional” storage subsystems 

•  Data copies 

§  Can we reduce or remove all of the above to PM? 
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RDMA PUSH MODE (SCHEMATIC) 

§  Enhanced direct placement model 
•  Client requests server resource of file, memory region, etc 

•  MAP_REMOTE_REGION(offset, length, mode r/w) 
•  Server pins/registers/advertises RDMA handle for region 
•  Client performs all RDMA 

•  RDMA Write to regionll 
•  RDMA Read from region (“Pull mode”) 
•  No requests of server (no server CPU/interrupt) 

•  Achieves near-wire latencies 
•  Client remotely commits to PM (new RDMA operation!) 

•  Ideally, no server CPU interaction 
•  RDMA NIC optionally signals server CPU 
•  Operation completes at client only when remote 

durability is guaranteed 
§  Client periodically updates server via master 

protocol 
•  E.g. file change, timestamps, other metadata 

§  Server can call back to client 
•  To recall, revoke, manage resources, etc 

§  Client signals server (closes) when done 

RDMA	  Read	  

Send	  

Send	  

DATA	  

RDMA	  Write	  
DATA	  

Send	  

Send	  

Remote	  Direct	  Access	  

Unregister	  

Register	  

RDMA	  Write	  
DATA	  

RDMA	  Commit	  (new)	  

Push	  

Pull	  
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STORAGE LAYERS PUSH MODE (HYPOTHETICAL) 

§  SMB3 (hypothetical) 
•  Setup – a new create context or FSCTL, registers 

and takes a lease 

•  Write, Read – direct RDMA access by client 

•  Commit – Client requests durability, 
SMB2_FLUSH-like processing 

•  Callback – Server manages client access, similar 
to oplock/lease break 

•  Finish – Client access complete, close or lease 
return 

§  NFSv4/RDMA (hypothetical) 
•  Setup – new NFSv4.x Operation, registers and 

offers delegation (or pNFS layout) 

•  Write, Read – direct RDMA access by client 

•  Commit – Client requests durability, 
NFS4_COMMIT-like processing 

•  Callback – via backchannel, Similar to current 
delegation or layout recall 

•  Finish – close or delegreturn/layoutreturn 

§  iSER (very hypothetical) 
•  Setup – a new iSER operation – registers 

and advertises buffers 
•  Write – a new Unsolicited SCSI-In operation 

•  Implement RDMA Write within initiator 
to target buffer 

•  No Target R2T processing 
•  Read – a new Unsolicited SCSI-Out 

operation 
•  Implement RDMA Read within initiator 

from target buffer 
•  No Target R2T processing 

•  Commit – a new iSER / modified iSCSI 
operation 
•  Perform Commit, via RDMA with 

optional Target processing 
•  Leverage FUA processing for signaling 

if needed/desired 
•  Callback – a new SCSI Unit Attention 

•  ??? 
•  Finish – a new iSER operation 
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RDMA PROTOCOLS  

§  Need a remote guarantee of Durability 
§  RDMA Write alone is not sufficient for this semantic 

•  Completion at sender does not mean data was placed 
•  NOT that it was even sent on the wire, much less received 
•  Some RNICs give stronger guarantees, but never that data was stored remotely 

•  Processing at receiver means only that data was accepted 
•  NOT that it was sent on the bus 
•  Segments can be reordered, by the wire or the bus 
•  Only an RDMA completion at receiver guarantees placement 

•  And placement != commit/durable 
•  No Commit operation 

§  Certain platform-specific guarantees can be made 
•  But the remote client cannot know them 
•  E.g. RDMA Read-after-RDMA Write (which won’t generally work) 
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RDMA PROTOCOL EXTENSION 

§  Two “obvious” possibilities 
•  RDMA Write with placement acknowledgement 

•  Advantage: simple API – set a “push bit” 
•  Disadvantage: significantly changes RDMA Write semantic, data path (flow 

control, buffering, completion). Requires creating a “Write Ack”. 
•  Requires significant changes to RDMA Write hardware design 

•  And also to initiator work request model (flow controlled RDMA Writes would 
block the send work queue) 

•  Undesirable 
•  RDMA “Commit” 

•  New operation, flow controlled/acknowledged like RDMA Read or Atomic 
•  Disadvantage: new operation 
•  Advantage: simple API – “flush”, operates on one or more regions (allows 

batching), preserves existing RDMA Write semantic (minimizing RNIC 
implementation change) 

•  Desirable 
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RDMA COMMIT (CONCEPT) 

§  RDMA Commit 
•  New wire operation 
•  Implementable in iWARP and IB/RoCE 

§  Initiating RNIC provides region list, other commit parameters 
•  Under control of local API at client/initiator 

§  Receiving RNIC queues operation to proceed in-order 
•  Like RDMA Read or Atomic processing currently 
•  Subject to flow control and ordering 

§  RNIC pushes pending writes to targeted regions 
•  Alternatively, NIC may simply opt to push all writes 

§  RNIC performs PM commit 
•  Possibly interrupting CPU in current architectures 
•  Future (highly desirable to avoid latency) perform via PCIe 

§  RNIC responds when durability is assured 
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OTHER RDMA COMMIT SEMANTICS 

§  Desirable to include other semantics with Commit: 
•  Atomically-placed data-after-commit 

•  E.g. “log pointer update” 
•  Immediate data 

•  E.g. to signal upper layer 
•  An entire message 

•  For more complex signaling 
•  Can be ordinary send/receive, only with new specific ordering requirements 

•  Additional processing, e.g. integrity check 
•  These may be best implemented in ordered following operations 

§  Decisions will be workload-dependent 
•  Small log-write scenario will always commit 
•  Bulk data movement will permit batching 
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LOCAL RDMA API EXTENSIONS (CONCEPT) 

§  New platform-specific attributes to RDMA registration 
•  To allow them to be processed at the server *only* 
•  No client knowledge – ensures future interop 

•  E.g. don’t want clients performing RDMA Read with flush expectations 

§  New local PM memory registration 
•  Register(region[], PMType, mode) -> Handle 

•  PMType includes type of PM 
•  i.e. plain RAM, or “commit required”, or PCIe-resident, or any other local 

platform-specific processing 
•  Mode includes disposition of data 

•  Read and/or write 
•  Cacheable after operation (needed by CPU on data sink) 

•  Handle is processed in receiving NIC under control of original Mode 
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LOCAL RDMA API EXTENSIONS 

§  Transparency is possible when upper layer provides 
Completions (e.g. messages or immediate data) 
•  Commit to durability can be piggybacked by data sink upon signaling 
•  Upper layer may not need to explicitly Commit 
•  Dependent on upper layer and workload 

§  Can apply to RDMA Write with Immediate 
§ Or … ordinary receives 

•  Ordering of operations is critical: 
•  Such RDMA Writes cannot be allowed to “pass” durability 

•  Therefore, protocol implications exist 

§  Completions imply latency, but transparency is good for rapid 
adoption 
•  Possible good first-phase approach 
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PLATFORM-SPECIFIC EXTENSIONS 

§  PCI extension to support Commit 
•  Allow NIC to provide durability directly and efficiently 
•  To Memory, CPU, PCI Root, PM device, PCIe device, … 
•  Avoids CPU interaction 
•  Supports strong data consistency model 

§  Performs equivalent of: 
•  CLFLUSHOPT (region list) 
•  PCOMMIT 

§ Or if NIC is on memory bus or within CPU complex… 
•  Other possibilities exist 
•  Platform-specific implementations, on platform-local basis 

§  Standard extensions are most desirable 
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LATENCIES (EXPECTATIONS) 

§  Single-digit microsecond remote Write+Commit 
•  Push mode minimal write latencies (2-3us + data wire time) 
•  Commit time NIC-managed and platform+payload dependent 
•  Note, this is order-of-magnitude improvement over today’s transfer mode 

•  30-50us as mentioned 

§  Remote Read also possible 
•  Roughly same latency as write, but without commit 

§  No server interrupt 
•  Zero server CPU overhead 
•  Once RDMA and PCIe extensions in place 

§  Single client interrupt 
•  Moderation and batching can reduce further when pipelining 

§  Deep parallelism with Multichannel and flow control 
management 
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RDMA IMPLICATIONS 

§  Remote PM access is a new upper layer protocol 
•  It will have RNIC and Verbs implications 

§  Possible implications on: 
•  RDMA operation “workload” 
•  Resources 
•  Memory registration semantics 

§  Speculation/exploration slides follow 
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RDMA PM WORKLOAD 

§  “Push mode” workload very simple: 
•  One-time setup to connect, authenticate, request registered memory 
•  Following: pure RDMA and commit operation stream 

§ One-sided workload – all programmatic activity on the initiator 
§  Target-side CPU nearly silent 

•  Except for metadata updates, recalls, revocation, etc. 

§  Implication: target-side efficiency completely in the RNIC 
§  A return to the “storage adapter” model? 
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RDMA RESOURCE IMPLICATIONS #1 

§  Large regions registered 
•  Regions will span large segments of PM (e.g. entire DIMM) 
•  Or perhaps long scatter lists mapping single file (e.g. virtual hard disk) 

§  Note – 1 TB is 40 bits of addressing 
•  Expect 6 TB in first-gen Intel 3DXP!  (43 bits, 2³¹ pages) 
•  This will favor region-based TPT’s 

§  The DMA MR / Privileged MR / Stag0 cannot span “all physical” 
•  It would cross domains from DRAM to PMEM to IO space 
•  These domains require different durability properties and commit methods 

§  IO size changes 
•  Very small (bytes, cachelines) 
•  Very large (entire regions) 
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RDMA RESOURCE IMPLICATIONS #2 

§  Long-lived target regions 
•  Regions will not be registered/invalidated per-IO 
•  Smaller number of regions needed – 1/DIMM, 1/object, etc? 
•  More Protection Domains? (for better isolation: 1/object?) 

§ Greatly reduced initiator (client) regions 
•  No RDMA from server to client means no need for remote access to client 

§ QP count changes? 
•  Not sure about this yet 

§  IRD/ORD or similar flow control limits 
•  Commit operation may require its own queue 
•  Commit latency may require higher than existing RDMA Read or Atomic queueing 

limit to fill pipeline 

§  Summary: something of a seismic shift in RNIC resource 
requirements 
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VERBS IMPLICATIONS 

§  Commit operation 
• With potentially complex scatter list 
•  New “commit fail” semantics which return status and do not break connection 

§ Memory registration 
•  Region properties as mentioned earlier: 

•  Type of PM 
•  Commit disposition 
•  Other properties (integrity, …) 

•  Memreg verb must support large offsets (40 bits and up) 
•  Each individual RDMA wire operation probably still ok at 32 bits. 

•  Memreg verb may need to “split” regions or return short results 
•  Because a single memory handle cannot span devices or device types 

•  DMA MR possibly obsolete 

§  However – no Verb-layer negotiation 
•  This is best left to the upper layers, as is done now 
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EXTERNAL EFFORTS 
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§  Requirements and Protocol 
•  For RDMA Commit operation 
•  Also local PM behaviors 

•  Memory registration 
•  Independent of transport 

•  Applies to iWARP, IB, RoCE 
§  IETF Working Group 

•  STORM: RDMA (iWARP) and 
Storage (iSCSI) 

•  Recently closed, but active for 
discussion 

•  Another WG, or individual process 
TBD 

§  Also discussing in 
•  IBTA (IB/RoCE) expected 
•  SNIA NVM TWG 
•  Open Fabrics DS/DA? etc. 

https://datatracker.ietf.org/doc/draft-talpey-rdma-commit/ 
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CLOSING QUESTIONS 

§ Getting to the right semantic? 
•  Discussion in multiple standards groups (PCI, RDMA, Storage, …) 
•  How to coordinate these discussions? 
•  Implementation in hardware ecosystem 
•  Drive consensus from upper layers down to lower layers! 

§ What about new API semantics? 
•  Does NVML add new requirements? 
• What about PM-aware filesystems (DAX/DAS)? 

§ Other semantics – or are they Upper Layer issues? 
•  Authentication? 
•  Integrity/Encryption? 
•  Virtualization? 
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