MULTI-RAIL LNET FOR LUSTRE

Amir Shehata, Lustre Network Engineer, Intel Corp
Olaf Weber, Senior Software Engineer, SGI Storage Software

April 6th, 2016
MULTI-RAIL LNET: WHAT AND WHY
AGENDA

- Overview of Multi-Rail design in LNet
- Why LNet level implementation
- Multi-Rail Use Case scenarios
- How to configure and use Multi-Rail
WITHOUT MULTI-RAIL

Client

o2ib0

MGS

MGT

MDS

MDT

Client

o2ib1

OSS

OST

OSS

OST

UV

o2ib2

OSS

OST

OSS

OST

o2ib3
MULTI-RAIL OBJECTIVES

- Multi-Rail allows nodes to communicate across multiple interfaces
 - Using multiple interfaces connected to one Luster Network
 - Using multiple interfaces connected to several Lustre Networks
 - Use different Network Interface types
 - These interfaces are used simultaneously (active-active)
WHY IN LNET

- Two possible solutions
 - Implement Multi-Rail in LNet
 - Utilize the same or different network interface types.
 - Ex: try to send over OPA/IB network, if that fails send over TCP network
 - Implement Multi-Rail in the LND
 - It will have to be implemented for every LND
 - Only bonds interfaces of the same type

- This Multi-Rail design and implementation is done in LNet
- This is a collaboration between Intel and SGI
From LNet perspective, there are two major advantages

- Increasing LNet performance by aggregating bandwidth of multiple interfaces
- Increasing network resiliency by trying all possible interfaces before a message is declared not deliverable
INCREASING BANDWIDTH - CLIENTS

- SGI Big Clients
 - SGI UV 300: 32 socket NUMA system
 - SGI UV 3000: 256 socket NUMA system
 - Systems with multiple TB of memory need a lot of bandwidth
 - Increase bandwidth by adding more interfaces.
Big clusters

- Bandwidth to the server becomes a bottleneck
- Add more interfaces to the servers and configure LNet to use them.
- Messages can also be multiplexed over the interfaces of the remote peer, which can be configured statically or discovered dynamically.
INCREASING BANDWIDTH

Multi-Rail
- Multiplexes across interfaces
 - Each LNet message is sent over a different local interface
 - Local interfaces are selected depending on several criteria:
 - the NUMA distance between the NI and the message memory.
 - In large systems (SGI UV) this can be a significant performance advantage.
 - How busy an NI is, determined by a set of credits associated with the NI
RESILIENCY – MULTIPLE NIS/SAME NETWORK
RESILIENCY – MULTIPLE NETWORKS

Peer 1

Peer 2

o2ib0

tcp0
RESILIENCY – MULTIPLE NETWORKS
CONFIGURING MULTI-RAIL LNET
USE CASES

- Improved performance
- Improved resiliency
- Allow multiple networks access to the filesystem such that you don’t have to have all clients on the same network.
- Better usage of large clients resource, including NUMA aware clients (IE: SGI UV)
- Fine grained control of traffic
The following elements can be configured via User Space utility (Inetctl):

- Local Network Interfaces
 - These are the interfaces by which a node sends messages
- Remote Peer Network Interfaces
 - These are the remote network interfaces to which a node sends messages.
- Selection Rules
 - These are the set of rules which determine the local network interface/remote peer interface used for communication.
TWO TYPES OF CONFIGURATION METHODS

- **Multi-Rail can be configured statically, via Inetctl (DLC).**
 - The following elements has to be configured statically.
 - Network Interfaces
 - Selection Rules
 - The following elements can be configured statically or discovered dynamically
 - Peer Network Interfaces
 - Configuration can be described via YAML syntax

- **Dynamic discovery can be enabled allowing LNet to discover peers automatically**
STATIC CONFIGURATION – BASIC CONCEPTS

- **On a node:**
 - Configure Local Networks Interfaces
 - Ex: tcp(eth0, eth1)
 - <eth0 IP>@tcp, <eth1 IP>@tcp
 - Configure Remote Network Interfaces
 - Specify a peers Network Interface IDs (NIDs) which it can be reached on
 - <peerX primary nid>, <peerX nid2>, etc
 - Configure selection Rules

- **The static configuration method is useful**
 - if the cluster is not subject to change and you want to catch any changes to the Network Layout.
 - If Primary NID of a server is not reachable on a specific network
DYNAMIC CONFIGURATION – BASIC CONCEPTS

Peer 1 (active)

ON INITIAL CONNECTION

Normal PING

PING response (NIs, Multi-Rail feature bit)

Push Ping (NIs, Multi-Rail feature bit)

ON PEER 1 NID CHANGE

Push Ping (NIs, Multi-Rail feature bit)

ON PEER 2 NID CHANGE

Push Ping (NIs, Multi-Rail feature bit)

Peer 2 (passive)
USE CASE 2 – IMPROVED RESILIENCY
USE CASE 3 – MULTI-NETWORK FS ACCESS
USE CASE 4 – TRAFFIC CONTROL

Client1

Client2

MGS

MDS

OSS1

OSS2

MGT

MDT

OST

OST
PROJECT STATUS

- Public project wiki page:
 - http://wiki.lustre.org/Multi-Rail_LNet

- Code development is done on the multi-rail branch off the Lustre master repo.
 - Patches to enable static configuration are under review
 - Unit testing and system testing underway
 - Patches for selection rules are under development
 - Patches for dynamic peer discovery are under development
 - Estimated project completion time: end of this year
 - Master landing date: TBD
THANK YOU
Amir Shehata, Lustre Network Engineer
Intel Corp