L
O
pd
<
—
—
<

N N N N N N N N N N NN NN NN N N N

T i e i N NN NN NN N
AAAAAS AANANAA A AN
AN - NANANAAAAA A~
NN NN N NN NN N NN
NN N NN N N N N NN NN NN

12 ANNUAL WORKSHOP 2016
Tzahi Oved

NN NN

B e e s s y
AN NN NN

L e 2 s 2B s s e s i s s s

(B s s s s i s s s e s
[0 s 2 i i e i s s o i s s i e s s s
B e i 2 i 2 i s s s s s e s

D N N N e i i 2 2 2 2 2l i i s o i o
[e e e s 2 i s 2 2 i 2 2 i s 2 2 2
,\/\/\/\.J\/j/\/\/\/\/\./\./\/\/ AN
\/\/\/\/\J\/_\/\/\/\/\/\/\/\/\/\/\/\/ ”
NN Y Y YYYYYYYYYYY Yy
A A A A A A A A A

[April, 2016]

/M Mellanox

Connect. Accelerate. Qutperform:

AGENDA

Introduction

Current status — The RAW ETH QP

Receive Side Scaling

L2 Tunneling stateless offloads

Capturing

Completion Queue — Support New Extensions
User Mode Non-Privileged Access
Conclusion

NN NN

(¢)=
()
()
(9)=(
()~

!

T e e e e e s e
T e
s e e s e e
A e s s s s s
NN
NN NN
AN NN NN
AN NN NN
AN NN
AN

OpenFabrics Alliance Workshop 2016

O
NN AN AN
ANANANAN

NN
T T S N S

INTRODUCTION

e NN NN NN N
NN NN NN
AN NN

AN NN

)
)
)
)
)
),
)
)

N NN N AN AN NN AN
NN
N 7

NN NN NN
s i i s s e
e s s i i s s s e

[S e e e e s
S s s i s s 2

NN AN AN

= Telecom, Web 2.0, Cloud & FSI high-end applications increase
network requirements

= Would like to reduce operating systems overhead

* Data path direct User application to HW access APIs
* Get high PPS rates, low latency, minimize cycle/byte and increased scalability

* Transparently use standard TCP/UDP/IP protocols
* No need for proprietary protocol designs

* Use existing rich HW protocol offload support
* Can interoperate with traditional OS TCP/IP stack

OpenFabrics Alliance Workshop 2016

N
s e e s e e
AN NN NN
AN NN NN
AN NN NN
AN
AN

AN

{
{
¢
{
(
¢
(
¢
J (

S s s i s s 2

m Ibv_qp type: RAW_ETH Verbs objects: QP,

CQ, Mem regs
= Use mature verbs objects Dsor Mode
* QP, CQ, MR L [Stack / DPDK]
]] Application
= Pair of send and receive [uVerbs
queues »—— Qo
, U $ |
° Send queue to transmit raw packets - a 3 +
No implicit headers K Sockets ' Sst”hde/riictv
° Receive queue is steered according TCP/IP Kernel : frames
to flows classification Stack
] | Ib_core |
= Stateless Offloads Engine net dev
* Currently csum offload is supported _mlx_en -
* And Interrupt moderation (CQ —
moderation) Ethernet Stateless Offloads Engine
" Require privileged user Receive Transmit
* CAP_NET_RAW Flow Flow

_ Tables Tables NI9

www.openfabrics.org 4 OpenFabrics Alliance Workshop 2016

),
),
),
)
)
)
&

NN NN NN

NN AN A A A A A

NP AN AN AN AN AN AN

T

NN AN AN

NN AN AN

LN

N A
A AN AN

NN

RSS

Introduction

= Receive Side Scaling (RSS) technology

enables spreading incoming traffic to
multiple receive queues

Each receive queue is associated with a
completion queue

Completion Queues (CQ) are bound to a
CPU core
* CQ is associated with interrupt vector and thus with CPU

 For polling, user may run polling for each CQ from
associated CPU

* In NUMA systems, CQ may be allocated on close
memory to associated CPU

Spreading the receive queues to different

CPU cores allows spreading receive

workload of incoming traffic

N -

B e s e 2 e e
T N s s s

NN
NN NN

e s o i s s o e
e i < s o s <

AN
NN NN

B s i o s e

Ingress Traffic

cQ#o ca#l CQ#N
RQ#O RQ#1 RQ#N
RSS Hash

|

Ingress Traffic

OpenFabrics Alliance Workshop 2016

RSS

Flow Overview

N -
B e s e 2 e e
AN NN
e s o i s s o e
e i < s o s <
AN
NN NN

B s i o s e

{
{
¢
{
(
¢
(
¢
J (

S s s i s s 2

Classify first, distribute after

= Begin with classification
* Using Steering (ibv_create_flow()) classify incoming traffic
* Classification rules may be any of the packet L2/3/4 header attributes
» e.g. TCP/UDP only traffic, IPv4 only traffic, ..
¢ Classification result is transport object - QP
= Continue with spreading
* Transport object (QPs) are responsible for spreading to the receive queues
* QPs carry RSS spreading rules and receive queue indirection table
* RQs are associated with CQ
* CQs are associated with CPU core

Different traffic types can be subject to different spreading

OpenFabrics Alliance Workshop 2016

RSS

N NN N AN NN AN
AN AN
AN NN
AN

N -
s e e s e e
NN NN
T e s e s s s e
NN NN

{
{
¢
{
(
¢
(
{
J (

NN NN NN

Work Queue (WQ)
. i . QP
= Typically QPs (Queued Pairs) are created with - N
3 elements [Transport]
* Transmit and receive Transport
* Receive Queue Send A Recv
» Exception is QPs which are associated with SRQ [wQ || wQ
* Send Queue \ ~/
= Extend verbs to support separate allocation of J
the above 3 elements QP
* Transport — ibv_qgp with no RQ or SQ)
* |Ibv_qgp_type of IBV_QPT_RAW_ETH [[Transport]
* Next will be UD QP type J
* New QP attribute: ibv_rx_hash_conf
* Work Queue — ibv_wq Send Recv
« Can be of 2 types: IBV_RQ — Receive Queue and IBV_SQ >W—Q< >W—Q<
. We'll start with IBV_RQ definition Send Recv
WQ) WQ
Send Recv
_wWaQ J L WQ

OpenFabrics Alliance Workshop 2016

RSS

Work Queue (WQ) - Cont.

. . . struct ibv_wqg {
New ObJGCt' Work Queue - |bV_Wq struct ibv_context *context;
Managed through following new calls: void *wq_context;
. i . o uint32_t handle;
° ibv_wq *ibv_create_wq(ibv_wq_init_attr) struct ibv_pd *pd ;
* ibv_modify_wq(ibv_wq , ibv_wq_attr) jtruct ibv_cq *eq; ,
o . * SRQ handle if WQ is to be
|bv_destory_wq(|bv_wq) associated with an SRQ, /
° ibv_post wq_recv(ibv_wq, ibv_recv_wr) otherwise NULL */
= = struct ibv_srq *srq;
Work Queues (ibv_wq) are associated aint32_t wa_mam;
with Completlon Queue (le_Cq) enum ibv_wq _state state;
* Multiple Work Queues may be mapped to same enum ibv_wq_type wq_type;
. uint32 t comp mask;
Completion Queue (many to one) L }s - -)

Work Queues of type Receive Queue (IBV_RQ) may share receive pull

* By associating many Work Queues to same Shared Receive Queue (the existing verbs ibv_srq
object)

QP (ibv_qgp) can be created without internal Send and Receive Queues and
associated with external Work Queue (ibv_wq)

QP can be associated with multiple Work Queues of type Receive Queue
* Through Receive Queue Indirection Table object

OpenFabrics Alliance Workshop 2016

NSNS
N N N NN N
N N N NN NN N
B e e i e s s e
NN N NN NN N
NN NN NN
N N NN NN NN N

S
©
| -
o)
S
o
D
b
O
i
(75
|
e}
(0’
D
=
-
(T
(@)
()
=

P s e i s e e

CREATE_RQ

y

A

DESTROY_RQ

@+

any state

SW
Transition

MODIFY_RQ
(RDY2ERR)

SW/HW

Transition

MODIFY_RQ
(RDY2RDY)

OpenFabrics Alliance Workshop 2016

RSS

Receive Work Queue Indirection Table

FONNN NN N NN

)
€
)
>>
3
€
)
@,

» New object: Receive Work Queue " struct ibv rwq ind table { A
Indirection Table — struct ibv_context *context;
. . uint32 t handle;
ibv_rwqg_ind_table int ind_tbl num;
* Managed through following new ,, RS comp_mask;
calls:
‘ it_>v_wq_ind_tb| /* Receive Work Queue Indirection Table
*ibv_create rwq_ind_table(ibv_rwqg_ind _table i | attributes
nit_attr) 3 _ _ o
* ibv_modify_rwq_ind_table(ibv_rwq_ind_table) | SFUCE T ind toble et E St e
* ibv_query rwg_ind_table(ibv_rwq_ind_tbl, struct ibv wq **rwq ind tbl;
ibv_rwq_ind_table attr) uint32_t comp_mask;
° ibv_destroy rwq_ind_table(ibv_rwq_ind_tbl) b
[| H H /*
QP_S ma_y be aSSOCIated Wlth an RQ * Receive Work Queue Indirection Table
Indirection Table attributes
. . w2y
" M-UItlple QPS may be aSSOCIated struct ibv_rwq ind table attr {
with same RQ Indirection Table ERREEE Al Ll
uint32_t log _rwgq ind tbl size;
struct ibv_wq **rwq ind tbl;
uint32 t comp_mask;
\l: 4

OpenFabrics Alliance Workshop 2016

RSS

FONNN NN N NN

)
€
)
>>
3
o
)
@,

Transport Object (QP)
3)
truct ibv rx hash f {
" “RSS” QP = c/* errufn_j.ba\rs‘_ﬁccjlr;sh_fnction */
* QP attributes (ibv_gp_attr) now include uint8_t rx_hash_function;

/* valid only for Toeplitz */
uint8_t *rx hash key;
/* enum ibv_rx hash fields */

RSS hash configuration attributes
(ibv_rx_hash_conf)

* QP is Stateless uint64_ t rx hash fields_mask;
) . struct ibv rwqg ind table *rwq ind tbl;
* QP’s Send and Receive WQs parameters } s =LA e
are invalid - QP has no internal work /*
queues RX Hash Function.
: . * /
¢ .USG lbv_post_wq_recv instead of enum ibv_rx hash function_flags ({
ibv_post_recv IBV_RX HASH FUNC_TOEPLTIZ = 1 << 0,
* QP is connected to RQ Indirection Table IBV_RX_HASH_FUNC_XOR R

};

= On Receive, traffic is steered to i
Field represented by the flag will be

the QP according to GXiSting used in RSS Hash calculation.
steering API oo .
enum ibv _rx hash fields ({

* Ibv_create_flow() IBV _RX HASH SRC_IPV4 =1<<0,
. . - IBV_RX HASH DST IPV4 =1<<1,
" Following, matching RQ is I8V _RX_HASH_SRC_IPVE -1« 2,
chosen according to QPs hash IBV_RX_HASH DST_IPV6 =L g
. IBV_RX HASH SRC_PORT TCP = 1 << 4,
calculation IBV_RX HASH DST PORT TCP = 1 << 5,
IBV_RX HASH SRC_PORT UDP = 1 << 6,
IBV_RX HASH DST PORT UDP = 1 << 7

\L: I /
OpenFabrics Alliance Workshop 2016

I CHHHHHHH
2686 CHHHHHHH
R S 9S 85005050208
02620 RSS 9380302020203020
)/):\ (}<<<<< (((((
HH _ O
e8e8e Flow Diagram 9800002000
8269 28222225
Verbs Steering Classifies the traffic IBV_QPT_RAW_PACKET QPs distributes traffic type between RQs/Cores

Verbs Flows IBV_QPT_RAW_PACKET QPs with ibv_rwa_ind_tbl IBV._WQT RQ 1BV CQs Cores

IBV_QP_INIT_ATTR_RX_HASH =1

Enabled flags in rx_hash_fields_mask
A—

B e ipva

‘ rx_hash_function‘ 5
Tcp » RQ5S » cal == =—» Corel
Ddn - QP#10
ipvb _
g 8 RQ 8 > cQ2 p— e—p Core 2

Enabled flegs ig rx_hash_fields_mask

B

A 4

4 > RQ4 ca3 = =P Core3

‘rx_hash function‘

e

QP#11

OpenFabrics Alliance Workshop 2016

e N NN N NN N
NN NN NN

)
)
)
)
)
),
)
)

AN NN NN
AN

AN
AN

N -
s e e s e e
A e s s s s s
NN
NN NN
AN NN NN

= |[PolB UD QP type
* “RSS” UD QP is connected to RQ Indirection Table
* RSS UD QP to continue to manage UD transport attributes: pkey, gkey checks...
* Single wire QPN for all getting to all the QPs Receive Queues

* Transmit Side Scaling (TSS)
* As in RSS, QP is stateless, Send and Receive work queues attributes are invalide
* Use ibv_post wq_send instead of ibv_post _send
* For IPolB UD QP:
« Manage UD transport properties: pkey, gkey...

» Use single source QPN in DETH wire protocol header for all Send WQ which is
the “TSS” UD QP

* The same QP may be used for both “RSS” and “TSS” operations

OpenFabrics Alliance Workshop 2016

L2 TUNNELING

AN
AN
B s s s s

{
2
§2
3
32

_{<

;: /‘\ AN NN
s s s e s i s
2 2 o 2 B 2 2 o

N NN NN
T e e e e
NN NN

* Tunneling technologies like VXLAN, NVGRE, GENEVE were
introduced for solving cloud scalability and security challenges

= Require extensions of traditional NIC stateless offloads
* TX and RX inner headers checksum
 ibv_qp_attr to control inner csum offload
* Ibv_send_wr, ibv_wc to request and report inner csum
° Inner TCP Segmentation and De-segmentation (LSO/LRO)
 ibv_send_wr to support inner MSS settings
* Outer and inner Ethernet header VLAN insertion and stripping
» |Ibv_qgp_attr to control VLAN insert/strip
* Ibv_send_wr to indicate VLAN
* Ibv_wc to report strip VLAN
* Steering to QP according to outer and inner headers attributes
* |bv_create_flow(ibv_flow_attr) to support inner headers
* Perform RSS based on inner or on outer header attributes
* |Ibv_qgp_attr.ibv_rx_hash_conf to support inner header attributes
* Inner packet parsing and reporting its properties in Completion Queue Entry (CQE)
* Ibv_wec to support inner headers extraction

OpenFabrics Alliance Workshop 2016

S L
NN AN AN
ANANANAN

NN
T T S N S

CAPTURING

e N NN N NN N
NN NN NN
NN AN AN AN AN AN AN

AN NN NN
AN NN

)
)
)
)
)
),
)
)

NN AN AN

N
s e e s e e
A e s s s s s
NN
NN NN
AN NN NN

= Support standard Capturing interfaces and solutions

* User mode Ethernet traffic (OS Bypass traffic) is capture-able like traditional TCP/IP
stack traffic

* For Linux: standard PF_PACKET RAW Socket libpcap support, ie. utilities that use
libpcap are supported: tcpdump, wireshark, ...

* Windows: Microsoft Message Analyzer (MMA)
= Both TX and RX traffic

= Applicable for both ETH and RDMA traffic capturing

| capture app |
| | _;ems_f User Space
A
---------------------- Sockets~— -~ qoo oo oo o oo oo s
A
PF_INET PF_PACKET Kernel
TCP/IP Stack

— User mode capturing flow

— Standard capturing flow

IPolB/MLX ETH

HW

OpenFabrics Alliance Workshop 2016

CAPTURING

OS Bypass Capture App

s e e s e e
AN NN NN
AN NN NN
AN NN
AN

T T S N S

{
{
¢
{
(
¢
(
{
(

T e e e e e s e
T e
T e e e e
NN NN NN

= User mode OS bypass capturing application through Verbs API
* Through ibv_create flow() plus indicating sniffer flag

* Classify requested captured traffic
* Steer to QP. Can be “RSS” QP RQ#0 | RQ#1 | RQ#2 | RQ#3

Sniffer Flow Table QP#10

Priority | Classification | Direction | Action
1 MAC+VLAN TX+RX QP#10 SNIFF

r 1

Ingress Traffic ~ Egress Traffic

OpenFabrics Alliance Workshop 2016

(

\
/

COMPLETION QUEUE (CQ)

New Extension Support - Introduction

NN AN NS
AN
AN NN
NN NN
AN NN
N NN NN
B e s e 2 e e
T N s s s
AN AN
AN A A A
AN

{
{
{
(
(
(
{
¢
(

RN AN

= Extending Verbs Support for user mode Ethernet requires
growing the Work Completion (ibv_wc)

= More and more attributes are added to ibv_wc
* Completion time stamp
¢ Stripped VLAN
* Checksum and RSS hash result
* Tunneling inner headers information
= Completion Queue polling (ibv_poll_cq(ibv_wc®)) is critical data
path operation

= Growing ibv_wec size will result in performance hit
° Increased cache misses

* Redundant extra copies of per vendor HW completion memory to SW completion
memory (ibv_wc)

= A single completion data for all use cases is obsolete

OpenFabrics Alliance Workshop 2016

2
2
}
?
>
2
2

<

NSNS AN AN AN AN AN AN
NN NN NN NN

= Requirements

* Completion (CQE) attribute read according
to application needs

* Per vendor optimizations for each read
access

* Batch read of multiple Completions (CQE)
followed by single read pointer update
= jbv_cq is extended to include
function pointers for completion
handling

* Object oriented approach — no need to over
populate general verbs function namespace
* Methods will support extracting each
completion attribute
» So each app can extract only relevant
attributes

COMPLETION QUEUE (CQ)

New Extension Support - Verbs

A
%

e e e e
NN NN NN
g g s s s B s
/\/\/\/\/\/\r\/\/\
N

/

struct ibv_cq ex {

/* legacy ibv_cq fields */
ibv_cq cq;
int comp mask;

/* CQ management methods */

int (*begin poll ex) (struct ibv_cq ex *cq);
int (*next poll ex) (struct ibv_cq ex *cq);
void (*end poll ex) (struct ibv_cq ex *cq);

/* Work Completion per attribure read methods */

ibv_wc *(*ibv_read wc) (struct ibv_cq ex *cq);

int (*read result) (ibv_wc_opcode *opcode,
enum ibv_wc_status* status);

uint64 (*read time_stamp) (struct ibv_cq ex *cq);

fieldl t (*read fieldl) (struct ibv_cq ex *cq);

field2 t (*read field2) (struct ibv_cq ex *cq);

@ ¥

* Each verbs provider (vendor) will build it's extraction method
* Additionally a single method will be provided for extracting mostly used attributes (opcode, status, ..)

= Batch read support
* |bv_begin_poll(ibv_cq*) — Grab CQ lock

* |lbv_next_poll(ibv_cq*) — Advance CQ read pointer
* |bv_end_poll(ibv_cq*) — Update the provider with CQ read pointer (typically doorbell to HW)

OpenFabrics Alliance Workshop 2016

RAW ETH QP PRIVILIGES

ANANANANAN
AN
AN
N NN NN
NN NN NN
N e e
e e
NN NN AN
ANANANANA AN
!
AN NN
AN

Under Definition

RAW ETH QP allows app to build it’s own L2/3/4 headers
* Alike SOCK_RAW socket() type

Caller to ibv_create_qgp() with QP type of RAW_ETH must have
CAP_NET_RAW privileges
* Alike SOCK_RAW socket() type

Support non-privileged user - L2/3/4 headers must be controlled by OS
Option I:

* Add new QP types: RAW_ETH_UDP, RAW_ETH_TCP

Use ibv_ah for RAW ETH QP

Add d.IP indication to ibv_ah

On ibv_create_ah()ib_core will perform route and address resolution to determine source |/f and
corresponding s.MAC, s.IP and d.MAC.

L2/L3 header info will be cached in ibv_ah and registered for updates in case neigh is updated
» Perform period updates of kernel dst neigh aging timers

« HW is configured to enforce headers checks

Option ll:

¢ Stay with single QP Type: RAW_ETH

* App still build L2/3/4 headers itself

* HW is configured to enforce headers checks on allowed L2/3 addresses and L4 ports per QP
* Allowed addresses, ports may be configured though ibv_create qp and/or ibv_create_ flow()

Continue supporting RAW access for privileged users
OpenFabrics Alliance Workshop 2016

AN

(
(
(
(
(
{

T T
NN
AN

N

CONCLUSION

NN NN
NN
T e s e s s s e

AN NI NN
AN NN

T e e e e e s e
T e
T e e e e
NN NN NN

= Verbs API infrastructure is a robust and efficient API AP
= Generic object model to expend to new I/O offloads _G}Q'

= Control and data path infrastructure
* Use OS services for control path and allow bypass for data path
* Can answer performance requirements for both high PPS, BW and low latency

= Extendable in backward and forward compatible manner
through Verbs extensions

Great platform to expand user mode Ethernet programming

OpenFabrics Alliance Workshop 2016

L
O
pd
<
—
—
<

N N N N N N N N N N NN NN NN N N N

T i e i N NN NN NN N
AAAAAS AANANAA A AN
AN - NANANAAAAA A~
NN NN N NN NN N NN
NN N NN N N N N NN NN NN

| 1
INANAN AN NN NN NN AN NN NN NN

1
l\/\/\/\/\(/_lﬂ\((/\/\/\/\/\/\ NN NN
AAAAANAAAAANANANANAANAAA AN

INANANANANANANANAN AN NN NN NN

N NN AN NN AN NN NN AN NN NN

12t ANNUAL WORKSHOP 2016

THANK YOU
Tzahi Oved

AN NN NN
B e s s s e e s

e e e e e e e

L e 2 s 2B s s e s i s s s

(B s s s s i s s s e s
[0 s 2 i i e i s s o i s s i e s s s
B e i 2 i 2 i s s s s s e s

D N N N e i i 2 2 2 2 2l i i s o i o
[e e e s 2 i s 2 2 i 2 2 i s 2 2 2
,\/\/\/\.J\/j/\/\/\/\/\./\./\/\/ AN
\/\/\/\/\J\/_\/\/\/\/\/\/\/\/\/\/\/\/ ”
NN Y Y YYYYYYYYYYY Yy
A A A A A A A A A

TECHNOLOGIES

A\

Connect. Accelerate. Qutperform:

