
14th ANNUAL WORKSHOP 2018

VERBS COUNTERS
Jason Gunthorpe , Alex Rosenbaum, Guy Shattah

April 2018

VERBS COUNTERS

Programmatic access to high speed
hardware counters

RFC:

https://www.spinics.net/lists/linux-rdma/msg58579.html

https://www.spinics.net/lists/linux-rdma/msg58579.html

MOTIVATION

To-date RDMA provides only counters at the whole port
level
Verbs counters provide a way to count per-object

information, with full HW offload

Observe behavior details of a single connection without
requiring CPU involvement in each packet
Programmatic control allows process to manage counting

as desired

MOTIVIATION #2

RDMA Debug-ability
 Connect counters to objects in another process (Long term goal)
 Application self-debug details of the RDMA protocol hidden to the

application (re-transmits, packet loss, NACKs, etc)

Flow Processing
 Passively monitor traffic flows, eg monitor networking on a per-VM basis
 DPDK

Self-Monitoring
 Compute actual instant bandwidth utilization

OVERVIEW

Counters objects hold a set of counter slots
Each slot can be assigned to a 'sample point'
API to read the counter value from all slots in a
counter object

API

Basic counter object creation:

struct ibv_counters *ibv_create_counters(struct ibv_context *context,
struct ibv_counters_init_attr *init_attr);

int ibv_destroy_counters(struct ibv_counters *counters);

SAMPLE POINTS

Standard verbs sample points are intended to be
very well defined
Easy to define hardware specific sampling points
via a DV API
Starting out with simple packet and octet counters

API

enum ibv_counter_description {
IBV_COUNTER_PACKETS,
IBV_COUNTER_BYTES,

struct ibv_counter_attach_attr {
enum ibv_counter_description counter_desc;
uint32_t index;

};

int ibv_attach_counters_point_flow(struct ibv_counters *counters,
struct ibv_counter_attach_attr *attr,
struct ibv_flow *flow);

READING COUNTERS

Expecting implementations to require a kernel syscall
Return all counter values at once
Approximate values or more expensive retrieval
Simple monotonic and non-saturating uint64_t values
HW not required to return an 'atomic snapshot'

API

Flags:
IBV_READ_COUNTERS_ATTR_PREFER_CACHED

int ibv_read_counters(struct ibv_counters *counters, size_t ncounters,
uint64_t counters_value[], int attr_flags);

LIMITATIONS

The API allows a wide range of combinations that hardware
may not support:
 Combinations of sampling points in one object, eg can not sample two

flow objects at once
 Sampling types against objects, eg may support octet for flow but not for

QP
 HW may not be able to attach/detach after object creation

App can detect this via the EOPNOTSUPP/EINVAL return
code during setup.

FUTURE DIRECTIONS

Monitor other IB objects, such as MR's CQs, SQs,
etc.
More standardized verbs counters

14th ANNUAL WORKSHOP 2018

THANK YOU
Jason Gunthorpe, Sr. Principal Engineer

Mellanox

	Verbs Counters
	Verbs Counters
	Motivation
	Motiviation #2
	Overview
	API
	Sample Points
	API
	Reading Counters
	API
	Limitations
	Future Directions
	THANK YOU

