]> git.openfabrics.org - ~shefty/rdma-dev.git/commitdiff
i386: prepare shared kernel/hpet.c
authorThomas Gleixner <tglx@linutronix.de>
Thu, 11 Oct 2007 09:12:20 +0000 (11:12 +0200)
committerThomas Gleixner <tglx@linutronix.de>
Thu, 11 Oct 2007 09:12:20 +0000 (11:12 +0200)
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
arch/i386/kernel/Makefile
arch/i386/kernel/hpet.c [deleted file]
arch/i386/kernel/hpet_32.c [new file with mode: 0644]

index 4967012119ae04b83b7cb160e64636a91a16b0fc..8bd7e8730046415ec3fee7b37bdb756db2c0b9d6 100644 (file)
@@ -37,7 +37,7 @@ obj-$(CONFIG_EFI)             += efi_32.o efi_stub_32.o
 obj-$(CONFIG_DOUBLEFAULT)      += doublefault.o
 obj-$(CONFIG_VM86)             += vm86_32.o
 obj-$(CONFIG_EARLY_PRINTK)     += early_printk.o
-obj-$(CONFIG_HPET_TIMER)       += hpet.o
+obj-$(CONFIG_HPET_TIMER)       += hpet_32.o
 obj-$(CONFIG_K8_NB)            += k8.o
 obj-$(CONFIG_MGEODE_LX)                += geode.o
 
diff --git a/arch/i386/kernel/hpet.c b/arch/i386/kernel/hpet.c
deleted file mode 100644 (file)
index 533d493..0000000
+++ /dev/null
@@ -1,553 +0,0 @@
-#include <linux/clocksource.h>
-#include <linux/clockchips.h>
-#include <linux/errno.h>
-#include <linux/hpet.h>
-#include <linux/init.h>
-#include <linux/sysdev.h>
-#include <linux/pm.h>
-#include <linux/delay.h>
-
-#include <asm/hpet.h>
-#include <asm/io.h>
-
-extern struct clock_event_device *global_clock_event;
-
-#define HPET_MASK      CLOCKSOURCE_MASK(32)
-#define HPET_SHIFT     22
-
-/* FSEC = 10^-15 NSEC = 10^-9 */
-#define FSEC_PER_NSEC  1000000
-
-/*
- * HPET address is set in acpi/boot.c, when an ACPI entry exists
- */
-unsigned long hpet_address;
-static void __iomem * hpet_virt_address;
-
-static inline unsigned long hpet_readl(unsigned long a)
-{
-       return readl(hpet_virt_address + a);
-}
-
-static inline void hpet_writel(unsigned long d, unsigned long a)
-{
-       writel(d, hpet_virt_address + a);
-}
-
-/*
- * HPET command line enable / disable
- */
-static int boot_hpet_disable;
-
-static int __init hpet_setup(char* str)
-{
-       if (str) {
-               if (!strncmp("disable", str, 7))
-                       boot_hpet_disable = 1;
-       }
-       return 1;
-}
-__setup("hpet=", hpet_setup);
-
-static inline int is_hpet_capable(void)
-{
-       return (!boot_hpet_disable && hpet_address);
-}
-
-/*
- * HPET timer interrupt enable / disable
- */
-static int hpet_legacy_int_enabled;
-
-/**
- * is_hpet_enabled - check whether the hpet timer interrupt is enabled
- */
-int is_hpet_enabled(void)
-{
-       return is_hpet_capable() && hpet_legacy_int_enabled;
-}
-
-/*
- * When the hpet driver (/dev/hpet) is enabled, we need to reserve
- * timer 0 and timer 1 in case of RTC emulation.
- */
-#ifdef CONFIG_HPET
-static void hpet_reserve_platform_timers(unsigned long id)
-{
-       struct hpet __iomem *hpet = hpet_virt_address;
-       struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
-       unsigned int nrtimers, i;
-       struct hpet_data hd;
-
-       nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
-
-       memset(&hd, 0, sizeof (hd));
-       hd.hd_phys_address = hpet_address;
-       hd.hd_address = hpet_virt_address;
-       hd.hd_nirqs = nrtimers;
-       hd.hd_flags = HPET_DATA_PLATFORM;
-       hpet_reserve_timer(&hd, 0);
-
-#ifdef CONFIG_HPET_EMULATE_RTC
-       hpet_reserve_timer(&hd, 1);
-#endif
-
-       hd.hd_irq[0] = HPET_LEGACY_8254;
-       hd.hd_irq[1] = HPET_LEGACY_RTC;
-
-       for (i = 2; i < nrtimers; timer++, i++)
-               hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
-                       Tn_INT_ROUTE_CNF_SHIFT;
-
-       hpet_alloc(&hd);
-
-}
-#else
-static void hpet_reserve_platform_timers(unsigned long id) { }
-#endif
-
-/*
- * Common hpet info
- */
-static unsigned long hpet_period;
-
-static void hpet_set_mode(enum clock_event_mode mode,
-                         struct clock_event_device *evt);
-static int hpet_next_event(unsigned long delta,
-                          struct clock_event_device *evt);
-
-/*
- * The hpet clock event device
- */
-static struct clock_event_device hpet_clockevent = {
-       .name           = "hpet",
-       .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
-       .set_mode       = hpet_set_mode,
-       .set_next_event = hpet_next_event,
-       .shift          = 32,
-       .irq            = 0,
-};
-
-static void hpet_start_counter(void)
-{
-       unsigned long cfg = hpet_readl(HPET_CFG);
-
-       cfg &= ~HPET_CFG_ENABLE;
-       hpet_writel(cfg, HPET_CFG);
-       hpet_writel(0, HPET_COUNTER);
-       hpet_writel(0, HPET_COUNTER + 4);
-       cfg |= HPET_CFG_ENABLE;
-       hpet_writel(cfg, HPET_CFG);
-}
-
-static void hpet_enable_int(void)
-{
-       unsigned long cfg = hpet_readl(HPET_CFG);
-
-       cfg |= HPET_CFG_LEGACY;
-       hpet_writel(cfg, HPET_CFG);
-       hpet_legacy_int_enabled = 1;
-}
-
-static void hpet_set_mode(enum clock_event_mode mode,
-                         struct clock_event_device *evt)
-{
-       unsigned long cfg, cmp, now;
-       uint64_t delta;
-
-       switch(mode) {
-       case CLOCK_EVT_MODE_PERIODIC:
-               delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
-               delta >>= hpet_clockevent.shift;
-               now = hpet_readl(HPET_COUNTER);
-               cmp = now + (unsigned long) delta;
-               cfg = hpet_readl(HPET_T0_CFG);
-               cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
-                      HPET_TN_SETVAL | HPET_TN_32BIT;
-               hpet_writel(cfg, HPET_T0_CFG);
-               /*
-                * The first write after writing TN_SETVAL to the
-                * config register sets the counter value, the second
-                * write sets the period.
-                */
-               hpet_writel(cmp, HPET_T0_CMP);
-               udelay(1);
-               hpet_writel((unsigned long) delta, HPET_T0_CMP);
-               break;
-
-       case CLOCK_EVT_MODE_ONESHOT:
-               cfg = hpet_readl(HPET_T0_CFG);
-               cfg &= ~HPET_TN_PERIODIC;
-               cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
-               hpet_writel(cfg, HPET_T0_CFG);
-               break;
-
-       case CLOCK_EVT_MODE_UNUSED:
-       case CLOCK_EVT_MODE_SHUTDOWN:
-               cfg = hpet_readl(HPET_T0_CFG);
-               cfg &= ~HPET_TN_ENABLE;
-               hpet_writel(cfg, HPET_T0_CFG);
-               break;
-
-       case CLOCK_EVT_MODE_RESUME:
-               hpet_enable_int();
-               break;
-       }
-}
-
-static int hpet_next_event(unsigned long delta,
-                          struct clock_event_device *evt)
-{
-       unsigned long cnt;
-
-       cnt = hpet_readl(HPET_COUNTER);
-       cnt += delta;
-       hpet_writel(cnt, HPET_T0_CMP);
-
-       return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
-}
-
-/*
- * Clock source related code
- */
-static cycle_t read_hpet(void)
-{
-       return (cycle_t)hpet_readl(HPET_COUNTER);
-}
-
-static struct clocksource clocksource_hpet = {
-       .name           = "hpet",
-       .rating         = 250,
-       .read           = read_hpet,
-       .mask           = HPET_MASK,
-       .shift          = HPET_SHIFT,
-       .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
-       .resume         = hpet_start_counter,
-};
-
-/*
- * Try to setup the HPET timer
- */
-int __init hpet_enable(void)
-{
-       unsigned long id;
-       uint64_t hpet_freq;
-       u64 tmp, start, now;
-       cycle_t t1;
-
-       if (!is_hpet_capable())
-               return 0;
-
-       hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
-
-       /*
-        * Read the period and check for a sane value:
-        */
-       hpet_period = hpet_readl(HPET_PERIOD);
-       if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
-               goto out_nohpet;
-
-       /*
-        * The period is a femto seconds value. We need to calculate the
-        * scaled math multiplication factor for nanosecond to hpet tick
-        * conversion.
-        */
-       hpet_freq = 1000000000000000ULL;
-       do_div(hpet_freq, hpet_period);
-       hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
-                                     NSEC_PER_SEC, 32);
-       /* Calculate the min / max delta */
-       hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
-                                                          &hpet_clockevent);
-       hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
-                                                          &hpet_clockevent);
-
-       /*
-        * Read the HPET ID register to retrieve the IRQ routing
-        * information and the number of channels
-        */
-       id = hpet_readl(HPET_ID);
-
-#ifdef CONFIG_HPET_EMULATE_RTC
-       /*
-        * The legacy routing mode needs at least two channels, tick timer
-        * and the rtc emulation channel.
-        */
-       if (!(id & HPET_ID_NUMBER))
-               goto out_nohpet;
-#endif
-
-       /* Start the counter */
-       hpet_start_counter();
-
-       /* Verify whether hpet counter works */
-       t1 = read_hpet();
-       rdtscll(start);
-
-       /*
-        * We don't know the TSC frequency yet, but waiting for
-        * 200000 TSC cycles is safe:
-        * 4 GHz == 50us
-        * 1 GHz == 200us
-        */
-       do {
-               rep_nop();
-               rdtscll(now);
-       } while ((now - start) < 200000UL);
-
-       if (t1 == read_hpet()) {
-               printk(KERN_WARNING
-                      "HPET counter not counting. HPET disabled\n");
-               goto out_nohpet;
-       }
-
-       /* Initialize and register HPET clocksource
-        *
-        * hpet period is in femto seconds per cycle
-        * so we need to convert this to ns/cyc units
-        * aproximated by mult/2^shift
-        *
-        *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
-        *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
-        *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
-        *  (fsec/cyc << shift)/1000000 = mult
-        *  (hpet_period << shift)/FSEC_PER_NSEC = mult
-        */
-       tmp = (u64)hpet_period << HPET_SHIFT;
-       do_div(tmp, FSEC_PER_NSEC);
-       clocksource_hpet.mult = (u32)tmp;
-
-       clocksource_register(&clocksource_hpet);
-
-       if (id & HPET_ID_LEGSUP) {
-               hpet_enable_int();
-               hpet_reserve_platform_timers(id);
-               /*
-                * Start hpet with the boot cpu mask and make it
-                * global after the IO_APIC has been initialized.
-                */
-               hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
-               clockevents_register_device(&hpet_clockevent);
-               global_clock_event = &hpet_clockevent;
-               return 1;
-       }
-       return 0;
-
-out_nohpet:
-       iounmap(hpet_virt_address);
-       hpet_virt_address = NULL;
-       boot_hpet_disable = 1;
-       return 0;
-}
-
-
-#ifdef CONFIG_HPET_EMULATE_RTC
-
-/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
- * is enabled, we support RTC interrupt functionality in software.
- * RTC has 3 kinds of interrupts:
- * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
- *    is updated
- * 2) Alarm Interrupt - generate an interrupt at a specific time of day
- * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
- *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
- * (1) and (2) above are implemented using polling at a frequency of
- * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
- * overhead. (DEFAULT_RTC_INT_FREQ)
- * For (3), we use interrupts at 64Hz or user specified periodic
- * frequency, whichever is higher.
- */
-#include <linux/mc146818rtc.h>
-#include <linux/rtc.h>
-
-#define DEFAULT_RTC_INT_FREQ   64
-#define DEFAULT_RTC_SHIFT      6
-#define RTC_NUM_INTS           1
-
-static unsigned long hpet_rtc_flags;
-static unsigned long hpet_prev_update_sec;
-static struct rtc_time hpet_alarm_time;
-static unsigned long hpet_pie_count;
-static unsigned long hpet_t1_cmp;
-static unsigned long hpet_default_delta;
-static unsigned long hpet_pie_delta;
-static unsigned long hpet_pie_limit;
-
-/*
- * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
- * is not supported by all HPET implementations for timer 1.
- *
- * hpet_rtc_timer_init() is called when the rtc is initialized.
- */
-int hpet_rtc_timer_init(void)
-{
-       unsigned long cfg, cnt, delta, flags;
-
-       if (!is_hpet_enabled())
-               return 0;
-
-       if (!hpet_default_delta) {
-               uint64_t clc;
-
-               clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
-               clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
-               hpet_default_delta = (unsigned long) clc;
-       }
-
-       if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
-               delta = hpet_default_delta;
-       else
-               delta = hpet_pie_delta;
-
-       local_irq_save(flags);
-
-       cnt = delta + hpet_readl(HPET_COUNTER);
-       hpet_writel(cnt, HPET_T1_CMP);
-       hpet_t1_cmp = cnt;
-
-       cfg = hpet_readl(HPET_T1_CFG);
-       cfg &= ~HPET_TN_PERIODIC;
-       cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
-       hpet_writel(cfg, HPET_T1_CFG);
-
-       local_irq_restore(flags);
-
-       return 1;
-}
-
-/*
- * The functions below are called from rtc driver.
- * Return 0 if HPET is not being used.
- * Otherwise do the necessary changes and return 1.
- */
-int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
-{
-       if (!is_hpet_enabled())
-               return 0;
-
-       hpet_rtc_flags &= ~bit_mask;
-       return 1;
-}
-
-int hpet_set_rtc_irq_bit(unsigned long bit_mask)
-{
-       unsigned long oldbits = hpet_rtc_flags;
-
-       if (!is_hpet_enabled())
-               return 0;
-
-       hpet_rtc_flags |= bit_mask;
-
-       if (!oldbits)
-               hpet_rtc_timer_init();
-
-       return 1;
-}
-
-int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
-                       unsigned char sec)
-{
-       if (!is_hpet_enabled())
-               return 0;
-
-       hpet_alarm_time.tm_hour = hrs;
-       hpet_alarm_time.tm_min = min;
-       hpet_alarm_time.tm_sec = sec;
-
-       return 1;
-}
-
-int hpet_set_periodic_freq(unsigned long freq)
-{
-       uint64_t clc;
-
-       if (!is_hpet_enabled())
-               return 0;
-
-       if (freq <= DEFAULT_RTC_INT_FREQ)
-               hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
-       else {
-               clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
-               do_div(clc, freq);
-               clc >>= hpet_clockevent.shift;
-               hpet_pie_delta = (unsigned long) clc;
-       }
-       return 1;
-}
-
-int hpet_rtc_dropped_irq(void)
-{
-       return is_hpet_enabled();
-}
-
-static void hpet_rtc_timer_reinit(void)
-{
-       unsigned long cfg, delta;
-       int lost_ints = -1;
-
-       if (unlikely(!hpet_rtc_flags)) {
-               cfg = hpet_readl(HPET_T1_CFG);
-               cfg &= ~HPET_TN_ENABLE;
-               hpet_writel(cfg, HPET_T1_CFG);
-               return;
-       }
-
-       if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
-               delta = hpet_default_delta;
-       else
-               delta = hpet_pie_delta;
-
-       /*
-        * Increment the comparator value until we are ahead of the
-        * current count.
-        */
-       do {
-               hpet_t1_cmp += delta;
-               hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
-               lost_ints++;
-       } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
-
-       if (lost_ints) {
-               if (hpet_rtc_flags & RTC_PIE)
-                       hpet_pie_count += lost_ints;
-               if (printk_ratelimit())
-                       printk(KERN_WARNING "rtc: lost %d interrupts\n",
-                               lost_ints);
-       }
-}
-
-irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
-{
-       struct rtc_time curr_time;
-       unsigned long rtc_int_flag = 0;
-
-       hpet_rtc_timer_reinit();
-
-       if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
-               rtc_get_rtc_time(&curr_time);
-
-       if (hpet_rtc_flags & RTC_UIE &&
-           curr_time.tm_sec != hpet_prev_update_sec) {
-               rtc_int_flag = RTC_UF;
-               hpet_prev_update_sec = curr_time.tm_sec;
-       }
-
-       if (hpet_rtc_flags & RTC_PIE &&
-           ++hpet_pie_count >= hpet_pie_limit) {
-               rtc_int_flag |= RTC_PF;
-               hpet_pie_count = 0;
-       }
-
-       if (hpet_rtc_flags & RTC_PIE &&
-           (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
-           (curr_time.tm_min == hpet_alarm_time.tm_min) &&
-           (curr_time.tm_hour == hpet_alarm_time.tm_hour))
-                       rtc_int_flag |= RTC_AF;
-
-       if (rtc_int_flag) {
-               rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
-               rtc_interrupt(rtc_int_flag, dev_id);
-       }
-       return IRQ_HANDLED;
-}
-#endif
diff --git a/arch/i386/kernel/hpet_32.c b/arch/i386/kernel/hpet_32.c
new file mode 100644 (file)
index 0000000..533d493
--- /dev/null
@@ -0,0 +1,553 @@
+#include <linux/clocksource.h>
+#include <linux/clockchips.h>
+#include <linux/errno.h>
+#include <linux/hpet.h>
+#include <linux/init.h>
+#include <linux/sysdev.h>
+#include <linux/pm.h>
+#include <linux/delay.h>
+
+#include <asm/hpet.h>
+#include <asm/io.h>
+
+extern struct clock_event_device *global_clock_event;
+
+#define HPET_MASK      CLOCKSOURCE_MASK(32)
+#define HPET_SHIFT     22
+
+/* FSEC = 10^-15 NSEC = 10^-9 */
+#define FSEC_PER_NSEC  1000000
+
+/*
+ * HPET address is set in acpi/boot.c, when an ACPI entry exists
+ */
+unsigned long hpet_address;
+static void __iomem * hpet_virt_address;
+
+static inline unsigned long hpet_readl(unsigned long a)
+{
+       return readl(hpet_virt_address + a);
+}
+
+static inline void hpet_writel(unsigned long d, unsigned long a)
+{
+       writel(d, hpet_virt_address + a);
+}
+
+/*
+ * HPET command line enable / disable
+ */
+static int boot_hpet_disable;
+
+static int __init hpet_setup(char* str)
+{
+       if (str) {
+               if (!strncmp("disable", str, 7))
+                       boot_hpet_disable = 1;
+       }
+       return 1;
+}
+__setup("hpet=", hpet_setup);
+
+static inline int is_hpet_capable(void)
+{
+       return (!boot_hpet_disable && hpet_address);
+}
+
+/*
+ * HPET timer interrupt enable / disable
+ */
+static int hpet_legacy_int_enabled;
+
+/**
+ * is_hpet_enabled - check whether the hpet timer interrupt is enabled
+ */
+int is_hpet_enabled(void)
+{
+       return is_hpet_capable() && hpet_legacy_int_enabled;
+}
+
+/*
+ * When the hpet driver (/dev/hpet) is enabled, we need to reserve
+ * timer 0 and timer 1 in case of RTC emulation.
+ */
+#ifdef CONFIG_HPET
+static void hpet_reserve_platform_timers(unsigned long id)
+{
+       struct hpet __iomem *hpet = hpet_virt_address;
+       struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
+       unsigned int nrtimers, i;
+       struct hpet_data hd;
+
+       nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
+
+       memset(&hd, 0, sizeof (hd));
+       hd.hd_phys_address = hpet_address;
+       hd.hd_address = hpet_virt_address;
+       hd.hd_nirqs = nrtimers;
+       hd.hd_flags = HPET_DATA_PLATFORM;
+       hpet_reserve_timer(&hd, 0);
+
+#ifdef CONFIG_HPET_EMULATE_RTC
+       hpet_reserve_timer(&hd, 1);
+#endif
+
+       hd.hd_irq[0] = HPET_LEGACY_8254;
+       hd.hd_irq[1] = HPET_LEGACY_RTC;
+
+       for (i = 2; i < nrtimers; timer++, i++)
+               hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
+                       Tn_INT_ROUTE_CNF_SHIFT;
+
+       hpet_alloc(&hd);
+
+}
+#else
+static void hpet_reserve_platform_timers(unsigned long id) { }
+#endif
+
+/*
+ * Common hpet info
+ */
+static unsigned long hpet_period;
+
+static void hpet_set_mode(enum clock_event_mode mode,
+                         struct clock_event_device *evt);
+static int hpet_next_event(unsigned long delta,
+                          struct clock_event_device *evt);
+
+/*
+ * The hpet clock event device
+ */
+static struct clock_event_device hpet_clockevent = {
+       .name           = "hpet",
+       .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
+       .set_mode       = hpet_set_mode,
+       .set_next_event = hpet_next_event,
+       .shift          = 32,
+       .irq            = 0,
+};
+
+static void hpet_start_counter(void)
+{
+       unsigned long cfg = hpet_readl(HPET_CFG);
+
+       cfg &= ~HPET_CFG_ENABLE;
+       hpet_writel(cfg, HPET_CFG);
+       hpet_writel(0, HPET_COUNTER);
+       hpet_writel(0, HPET_COUNTER + 4);
+       cfg |= HPET_CFG_ENABLE;
+       hpet_writel(cfg, HPET_CFG);
+}
+
+static void hpet_enable_int(void)
+{
+       unsigned long cfg = hpet_readl(HPET_CFG);
+
+       cfg |= HPET_CFG_LEGACY;
+       hpet_writel(cfg, HPET_CFG);
+       hpet_legacy_int_enabled = 1;
+}
+
+static void hpet_set_mode(enum clock_event_mode mode,
+                         struct clock_event_device *evt)
+{
+       unsigned long cfg, cmp, now;
+       uint64_t delta;
+
+       switch(mode) {
+       case CLOCK_EVT_MODE_PERIODIC:
+               delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
+               delta >>= hpet_clockevent.shift;
+               now = hpet_readl(HPET_COUNTER);
+               cmp = now + (unsigned long) delta;
+               cfg = hpet_readl(HPET_T0_CFG);
+               cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
+                      HPET_TN_SETVAL | HPET_TN_32BIT;
+               hpet_writel(cfg, HPET_T0_CFG);
+               /*
+                * The first write after writing TN_SETVAL to the
+                * config register sets the counter value, the second
+                * write sets the period.
+                */
+               hpet_writel(cmp, HPET_T0_CMP);
+               udelay(1);
+               hpet_writel((unsigned long) delta, HPET_T0_CMP);
+               break;
+
+       case CLOCK_EVT_MODE_ONESHOT:
+               cfg = hpet_readl(HPET_T0_CFG);
+               cfg &= ~HPET_TN_PERIODIC;
+               cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
+               hpet_writel(cfg, HPET_T0_CFG);
+               break;
+
+       case CLOCK_EVT_MODE_UNUSED:
+       case CLOCK_EVT_MODE_SHUTDOWN:
+               cfg = hpet_readl(HPET_T0_CFG);
+               cfg &= ~HPET_TN_ENABLE;
+               hpet_writel(cfg, HPET_T0_CFG);
+               break;
+
+       case CLOCK_EVT_MODE_RESUME:
+               hpet_enable_int();
+               break;
+       }
+}
+
+static int hpet_next_event(unsigned long delta,
+                          struct clock_event_device *evt)
+{
+       unsigned long cnt;
+
+       cnt = hpet_readl(HPET_COUNTER);
+       cnt += delta;
+       hpet_writel(cnt, HPET_T0_CMP);
+
+       return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
+}
+
+/*
+ * Clock source related code
+ */
+static cycle_t read_hpet(void)
+{
+       return (cycle_t)hpet_readl(HPET_COUNTER);
+}
+
+static struct clocksource clocksource_hpet = {
+       .name           = "hpet",
+       .rating         = 250,
+       .read           = read_hpet,
+       .mask           = HPET_MASK,
+       .shift          = HPET_SHIFT,
+       .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
+       .resume         = hpet_start_counter,
+};
+
+/*
+ * Try to setup the HPET timer
+ */
+int __init hpet_enable(void)
+{
+       unsigned long id;
+       uint64_t hpet_freq;
+       u64 tmp, start, now;
+       cycle_t t1;
+
+       if (!is_hpet_capable())
+               return 0;
+
+       hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
+
+       /*
+        * Read the period and check for a sane value:
+        */
+       hpet_period = hpet_readl(HPET_PERIOD);
+       if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
+               goto out_nohpet;
+
+       /*
+        * The period is a femto seconds value. We need to calculate the
+        * scaled math multiplication factor for nanosecond to hpet tick
+        * conversion.
+        */
+       hpet_freq = 1000000000000000ULL;
+       do_div(hpet_freq, hpet_period);
+       hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
+                                     NSEC_PER_SEC, 32);
+       /* Calculate the min / max delta */
+       hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
+                                                          &hpet_clockevent);
+       hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
+                                                          &hpet_clockevent);
+
+       /*
+        * Read the HPET ID register to retrieve the IRQ routing
+        * information and the number of channels
+        */
+       id = hpet_readl(HPET_ID);
+
+#ifdef CONFIG_HPET_EMULATE_RTC
+       /*
+        * The legacy routing mode needs at least two channels, tick timer
+        * and the rtc emulation channel.
+        */
+       if (!(id & HPET_ID_NUMBER))
+               goto out_nohpet;
+#endif
+
+       /* Start the counter */
+       hpet_start_counter();
+
+       /* Verify whether hpet counter works */
+       t1 = read_hpet();
+       rdtscll(start);
+
+       /*
+        * We don't know the TSC frequency yet, but waiting for
+        * 200000 TSC cycles is safe:
+        * 4 GHz == 50us
+        * 1 GHz == 200us
+        */
+       do {
+               rep_nop();
+               rdtscll(now);
+       } while ((now - start) < 200000UL);
+
+       if (t1 == read_hpet()) {
+               printk(KERN_WARNING
+                      "HPET counter not counting. HPET disabled\n");
+               goto out_nohpet;
+       }
+
+       /* Initialize and register HPET clocksource
+        *
+        * hpet period is in femto seconds per cycle
+        * so we need to convert this to ns/cyc units
+        * aproximated by mult/2^shift
+        *
+        *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
+        *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
+        *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
+        *  (fsec/cyc << shift)/1000000 = mult
+        *  (hpet_period << shift)/FSEC_PER_NSEC = mult
+        */
+       tmp = (u64)hpet_period << HPET_SHIFT;
+       do_div(tmp, FSEC_PER_NSEC);
+       clocksource_hpet.mult = (u32)tmp;
+
+       clocksource_register(&clocksource_hpet);
+
+       if (id & HPET_ID_LEGSUP) {
+               hpet_enable_int();
+               hpet_reserve_platform_timers(id);
+               /*
+                * Start hpet with the boot cpu mask and make it
+                * global after the IO_APIC has been initialized.
+                */
+               hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
+               clockevents_register_device(&hpet_clockevent);
+               global_clock_event = &hpet_clockevent;
+               return 1;
+       }
+       return 0;
+
+out_nohpet:
+       iounmap(hpet_virt_address);
+       hpet_virt_address = NULL;
+       boot_hpet_disable = 1;
+       return 0;
+}
+
+
+#ifdef CONFIG_HPET_EMULATE_RTC
+
+/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
+ * is enabled, we support RTC interrupt functionality in software.
+ * RTC has 3 kinds of interrupts:
+ * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
+ *    is updated
+ * 2) Alarm Interrupt - generate an interrupt at a specific time of day
+ * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
+ *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
+ * (1) and (2) above are implemented using polling at a frequency of
+ * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
+ * overhead. (DEFAULT_RTC_INT_FREQ)
+ * For (3), we use interrupts at 64Hz or user specified periodic
+ * frequency, whichever is higher.
+ */
+#include <linux/mc146818rtc.h>
+#include <linux/rtc.h>
+
+#define DEFAULT_RTC_INT_FREQ   64
+#define DEFAULT_RTC_SHIFT      6
+#define RTC_NUM_INTS           1
+
+static unsigned long hpet_rtc_flags;
+static unsigned long hpet_prev_update_sec;
+static struct rtc_time hpet_alarm_time;
+static unsigned long hpet_pie_count;
+static unsigned long hpet_t1_cmp;
+static unsigned long hpet_default_delta;
+static unsigned long hpet_pie_delta;
+static unsigned long hpet_pie_limit;
+
+/*
+ * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
+ * is not supported by all HPET implementations for timer 1.
+ *
+ * hpet_rtc_timer_init() is called when the rtc is initialized.
+ */
+int hpet_rtc_timer_init(void)
+{
+       unsigned long cfg, cnt, delta, flags;
+
+       if (!is_hpet_enabled())
+               return 0;
+
+       if (!hpet_default_delta) {
+               uint64_t clc;
+
+               clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
+               clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
+               hpet_default_delta = (unsigned long) clc;
+       }
+
+       if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
+               delta = hpet_default_delta;
+       else
+               delta = hpet_pie_delta;
+
+       local_irq_save(flags);
+
+       cnt = delta + hpet_readl(HPET_COUNTER);
+       hpet_writel(cnt, HPET_T1_CMP);
+       hpet_t1_cmp = cnt;
+
+       cfg = hpet_readl(HPET_T1_CFG);
+       cfg &= ~HPET_TN_PERIODIC;
+       cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
+       hpet_writel(cfg, HPET_T1_CFG);
+
+       local_irq_restore(flags);
+
+       return 1;
+}
+
+/*
+ * The functions below are called from rtc driver.
+ * Return 0 if HPET is not being used.
+ * Otherwise do the necessary changes and return 1.
+ */
+int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
+{
+       if (!is_hpet_enabled())
+               return 0;
+
+       hpet_rtc_flags &= ~bit_mask;
+       return 1;
+}
+
+int hpet_set_rtc_irq_bit(unsigned long bit_mask)
+{
+       unsigned long oldbits = hpet_rtc_flags;
+
+       if (!is_hpet_enabled())
+               return 0;
+
+       hpet_rtc_flags |= bit_mask;
+
+       if (!oldbits)
+               hpet_rtc_timer_init();
+
+       return 1;
+}
+
+int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
+                       unsigned char sec)
+{
+       if (!is_hpet_enabled())
+               return 0;
+
+       hpet_alarm_time.tm_hour = hrs;
+       hpet_alarm_time.tm_min = min;
+       hpet_alarm_time.tm_sec = sec;
+
+       return 1;
+}
+
+int hpet_set_periodic_freq(unsigned long freq)
+{
+       uint64_t clc;
+
+       if (!is_hpet_enabled())
+               return 0;
+
+       if (freq <= DEFAULT_RTC_INT_FREQ)
+               hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
+       else {
+               clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
+               do_div(clc, freq);
+               clc >>= hpet_clockevent.shift;
+               hpet_pie_delta = (unsigned long) clc;
+       }
+       return 1;
+}
+
+int hpet_rtc_dropped_irq(void)
+{
+       return is_hpet_enabled();
+}
+
+static void hpet_rtc_timer_reinit(void)
+{
+       unsigned long cfg, delta;
+       int lost_ints = -1;
+
+       if (unlikely(!hpet_rtc_flags)) {
+               cfg = hpet_readl(HPET_T1_CFG);
+               cfg &= ~HPET_TN_ENABLE;
+               hpet_writel(cfg, HPET_T1_CFG);
+               return;
+       }
+
+       if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
+               delta = hpet_default_delta;
+       else
+               delta = hpet_pie_delta;
+
+       /*
+        * Increment the comparator value until we are ahead of the
+        * current count.
+        */
+       do {
+               hpet_t1_cmp += delta;
+               hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
+               lost_ints++;
+       } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
+
+       if (lost_ints) {
+               if (hpet_rtc_flags & RTC_PIE)
+                       hpet_pie_count += lost_ints;
+               if (printk_ratelimit())
+                       printk(KERN_WARNING "rtc: lost %d interrupts\n",
+                               lost_ints);
+       }
+}
+
+irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
+{
+       struct rtc_time curr_time;
+       unsigned long rtc_int_flag = 0;
+
+       hpet_rtc_timer_reinit();
+
+       if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
+               rtc_get_rtc_time(&curr_time);
+
+       if (hpet_rtc_flags & RTC_UIE &&
+           curr_time.tm_sec != hpet_prev_update_sec) {
+               rtc_int_flag = RTC_UF;
+               hpet_prev_update_sec = curr_time.tm_sec;
+       }
+
+       if (hpet_rtc_flags & RTC_PIE &&
+           ++hpet_pie_count >= hpet_pie_limit) {
+               rtc_int_flag |= RTC_PF;
+               hpet_pie_count = 0;
+       }
+
+       if (hpet_rtc_flags & RTC_PIE &&
+           (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
+           (curr_time.tm_min == hpet_alarm_time.tm_min) &&
+           (curr_time.tm_hour == hpet_alarm_time.tm_hour))
+                       rtc_int_flag |= RTC_AF;
+
+       if (rtc_int_flag) {
+               rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
+               rtc_interrupt(rtc_int_flag, dev_id);
+       }
+       return IRQ_HANDLED;
+}
+#endif