
OFVWG:
Erasure Coding RDMA
Offload

Sagi Grimberg

Problem Statement

•  Modern storage arrays are usually distributed in a
clustered environment.

•  Problem: Disks and/or nodes inevitably tend to fail.

–  How can we survive failures and keep our data intact?

OFVWG 2

RAID 1 (Replication)

•  Instead of storing the data
 once, we will store more copies
 of the data on another
 disk/node.

•  If a disk/node fail, we are able to still recover the
data.

•  If we want to survive X failures, we need to replicate
X instances of the data.

OFVWG 3

RAID 1 pros/cons

•  Pros:
–  Simple to do
–  No need for extra computation
–  No need for reconstruct logic

•  Cons:
–  Requires a high storage space for redundancy
–  Inefficient wire utilization

OFVWG 4

RAID 5 (single parity block)

•  We divide our data into X blocks and calculate a
single parity block and store it as well.

•  If any of the drives fail we can reconstruct the

original data back from the parity block.

OFVWG 5

RAID 5 pros/cons

•  Pros:
–  Efficient storage utilization (small storage space for

redundancy)
–  Efficient wire utilization

•  Cons:
–  Requires computation to generate the parity block
–  Requires computation to reconstruct the original data
–  Need multi-level RAID to survive more than a single

failure.

OFVWG 6

RAID 6 (dual parity block)

•  We divide our data into X blocks and calculate
two parity block and store them as well.

•  If any two drives/nodes fail we can reconstruct

the original data back from the parity blocks.

OFVWG 7

RAID 6 pros/cons

•  Pros:
–  Efficient storage utilization (small storage space for

redundancy)
–  Efficient wire utilization

•  Cons:
–  Requires computation to generate two parity blocks
–  Requires computation to reconstruct the original data
–  Need multi-level RAID to survive more than two

failures.

OFVWG 8

Erasure coding (generalize RAID)

•  There are different types of erasure codes
(Reed-Solomon, Cauchy and other MDS codes).

•  The mathematical approach is to use higher

rank polynomials over Galois finite fields
GF(2^w) in order to use minimum storage for K
number of disk/node failures.

•  Codes can be systematic (raw data is stored) or
non-systematic (data projections are stored).

OFVWG 9

Erasure coding (generalize RAID)

•  Erasure codes allows us to survive M failures for
any K data blocks where: K+M≤​2↑𝑤 

•  For example if we use 𝐺𝐹(​2↑4 ) and we want to
survive 4 disk failures we can protect 12 data
blocks.
–  This means we only spend 33.3% of storage to store

redundancy metadata.

OFVWG 10

Erasure coding Illustration

OFVWG 11

Erasure coding Decode Illustration

OFVWG 12

Erasure coding Decode Illustration

OFVWG 13

1.

2.

Erasure coding pros/cons

•  Pros:
–  *Very* Efficient storage utilization (small storage space for

redundancy)
–  *Very* Efficient wire utilization
–  User can choose his configuration (K,M) – no need for multi-level

RAID.

•  Cons:
–  Large computation overhead needed to generate the

redundancy metadata blocks
–  Large computation overhead needed to reconstruct the original

data

OFVWG 14

RDMA Erasure coding offload

•  Erasure codes calculations is CPU intensive.

•  Next generation HCAs can offer a calculation
engine.

•  These HCAs can also offer a coherent
calculation and networking solutions.

OFVWG 15

Programming model - SW

OFVWG 16

Programming model - Synchronous

OFVWG 17

Programming model - Asynchronous

OFVWG 18

Programming model – Full striping

OFVWG 19

API – Erasure coding context
•  EC context verbs representation

•  Allocation/Deallocation API

OFVWG 20

API – EC init attributes

OFVWG 21

API – EC memory layout

OFVWG 22

API – Synchronous Encode

OFVWG 23

API – Asynchronous Encode

OFVWG 24

API – Asynchronous Encode

OFVWG 25

API – Verbs stripe object

•  In order to perform the full striping operation via
a single API call we need to provide our strping
layout (who gets what)

OFVWG 26

API – Encode + Transfer

OFVWG 27

API – Synchronous Decode

OFVWG 28

API – Asynchronous Decode

OFVWG 29

•  Pretty much the same idea

OFVWG

Thank You

